【高等数学基础进阶】常微分方程-补充 & 多元函数微分学-补充

文章目录

    • 一阶微分方程
    • 微分方程求解
    • 高阶偏导数
    • 全微分
    • 偏导数计算
    • 可导与可微
    • 全微分形式的不变性
    • 隐函数微分法
    • 隐函数的偏导

一阶微分方程

一阶微分方程一般有五种解法:可分离变量的方程;齐次微分方程;一阶线性微分方程;伯努利方程;全微分方程
如果给定的一阶微分方程不属于上述五种标注形式,首先考虑将 x , y x,y x,y对调,即认定 x x x y y y的函数,再判断新方程的类型;或者利用简单的变量代换将其化为上述五种类型之一而求解

微分方程求解

例8:微分方程 y d x + ( x − 3 y 2 ) d y = 0 ydx+(x-3y^{2})dy=0 ydx+(x3y2)dy=0满足条件 y ∣ x = 1 = 1 y \Big|_{x=1}^{}=1 y x=1=1的解为 y = ( ) y=() y=()

这里用偏积分的方式求解

y = f ( x ) y=f(x) y=f(x),即有 g ( x , y ) = 0 g(x,y)=0 g(x,y)=0,依据题意,由于
∂ y ∂ y = 1 , ∂ z − 3 y 2 ∂ x = 1 \frac{\partial y}{\partial y}=1,\frac{\partial z-3y^{2}}{\partial x}=1 yy=1,xz3y2=1
因此可以用偏积分的方式
d g ( x , y ) = y d x ∫ d g ( x , y ) = ∫ y d x g ( x , y ) = x y + ϕ ( y ) 代入另一个 ∂ g ( x , y ) ∂ y = x + ϕ ′ ( y ) = x − 3 y 2 ϕ ′ ( y ) = − 3 y 2 ϕ ( y ) = − y 3 \begin{aligned} dg(x,y)&=ydx\\ \int\limits_{}dg(x,y)&=\int\limits_{}ydx\\ g(x,y)&=xy+\phi(y)\\ &代入另一个\\ \frac{\partial g(x,y)}{\partial y}&=x+\phi'(y)=x-3y^{2}\\ \phi'(y)&=-3y^{2}\\ \phi(y)&=-y^{3} \end{aligned} dg(x,y)dg(x,y)g(x,y)yg(x,y)ϕ(y)ϕ(y)=ydx=ydx=xy+ϕ(y)代入另一个=x+ϕ(y)=x3y2=3y2=y3
因此可得
g ( x , y ) = x y − y 3 = 0 g(x,y)=xy-y^{3}=0 g(x,y)=xyy3=0

y = 0 或 y = x y=0或y=\sqrt{x} y=0y=x
又因为 y ∣ x = 1 = 1 \begin{aligned} y \Big|_{x=1}^{}=1\end{aligned} y x=1=1,因此 y = x y=\sqrt{x} y=x

高阶偏导数

定理:如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的两个混合偏导数在区域 D D D/某点内连续,则在该区域内/该点
∂ 2 z ∂ x ∂ y = ∂ 2 z ∂ y ∂ x \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x} xy2z=yx2z

对于二元以上的函数,也可以类似地定义二阶或者更高阶偏导数,且二阶与高阶混合偏导数连续时,混合偏导数的值与求导次序无关

全微分

定义:如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)处的全增量
Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_{0}+\Delta x,y_{0}+\Delta y)-f(x_{0},y_{0}) Δz=f(x0+Δx,y0+Δy)f(x0,y0)
可表示为
Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z=A \Delta x+B \Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ)
其中 A , B A,B A,B Δ x , Δ y \Delta x,\Delta y Δx,Δy无关, ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} ρ=(Δx)2+(Δy)2 ,则称函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)处可微,而 A Δ x + B Δ y A \Delta x+B \Delta y AΔx+BΔy称为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)处的全微分,记为
d z = A Δ x + B Δ y dz=A \Delta x+B \Delta y dz=AΔx+BΔy
如果 f ( x , y ) f(x,y) f(x,y)在区域 D D D内的每一点 ( x , y ) (x,y) (x,y)都可微分,则称 f ( x , y ) f(x,y) f(x,y) D D D内可微分

偏导数计算

先带后求明显比定义法更方便,因为带完后原本二元函数变为一元函数,一元函数看导数是否存在是方便的

可导与可微

f ( x , y ) = { x y x 2 + y 2 ( x , y ) ≠ ( 0 , 0 ) 0 ( x , y ) = ( 0 , 0 ) \begin{aligned} f(x,y)=\left\{\begin{aligned}& \frac{xy}{\sqrt{x^{2}+y^{2}}}&(x,y)\ne (0,0)\\&0&(x,y)=(0,0)\end{aligned}\right.\end{aligned} f(x,y)= x2+y2 xy0(x,y)=(0,0)(x,y)=(0,0) ( 0 , 0 ) (0,0) (0,0)点可导,但不可微

f x ( 0 , 0 ) = lim ⁡ Δ x → 0 Δ x ⋅ 0 ( Δ x ) 2 = 1 f y ( 0 , 0 ) = 1 \begin{aligned} f_{x}(0,0)&=\lim\limits_{\Delta x \to 0}\frac{\Delta x \cdot 0}{\sqrt{(\Delta x)^{2}}}=1\\ f_{y}(0,0)&=1 \end{aligned} fx(0,0)fy(0,0)=Δx0lim(Δx)2 Δx0=1=1
显然可导
lim ⁡ Δ x → 0 Δ y → 0 Δ x Δ y ( Δ x ) 2 + ( Δ y ) 2 − 0 − ( 1 ⋅ Δ x + 1 ⋅ Δ y ) ( Δ x ) 2 + ( Δ y ) 2 = lim ⁡ Δ x → 0 Δ y → 0 Δ x Δ y − ( Δ x + Δ y ) ( Δ x ) 2 + ( Δ y ) 2 ( Δ x ) 2 + ( Δ y ) 2 = lim ⁡ Δ x → 0 Δ y = k Δ x [ k − ( k + 1 ) k 2 + 1 ] ( Δ x ) 2 ( k 2 + 1 ) ( Δ x ) 2 ≠ 0 \begin{aligned} &\lim\limits_{\substack{\Delta x \to 0\\ \Delta y\to 0}}\frac{\frac{\Delta x \Delta y}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}-0-(1\cdot \Delta x+1\cdot \Delta y)}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}\\ =&\lim\limits_{\substack{\Delta x \to 0\\ \Delta y\to 0}}\frac{\Delta x \Delta y-(\Delta x+\Delta y)\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}{(\Delta x)^{2}+(\Delta y)^{2}}\\ =&\lim\limits_{\substack{\Delta x\to 0\\ \Delta y=k \Delta x}}\frac{[k-(k+1)\sqrt{k^{2}+1}] (\Delta x)^{2}}{(k^{2}+1)(\Delta x)^{2}}\ne 0 \end{aligned} ==Δx0Δy0lim(Δx)2+(Δy)2 (Δx)2+(Δy)2 ΔxΔy0(1Δx+1Δy)Δx0Δy0lim(Δx)2+(Δy)2ΔxΔy(Δx+Δy)(Δx)2+(Δy)2 Δx0Δy=kΔxlim(k2+1)(Δx)2[k(k+1)k2+1 ](Δx)2=0
显然不可微

全微分形式的不变性

设函数 z = f ( u , v ) , u = u ( x , y ) , v = v ( x , y ) z=f(u,v),u=u(x,y),v=v(x,y) z=f(u,v),u=u(x,y),v=v(x,y)都有连续的一阶偏导数,则复合函数 z = f [ u ( x , y ) , v ( x , y ) ] z=f[u(x,y),v(x,y)] z=f[u(x,y),v(x,y)]的全微分
d z = ∂ z ∂ x d x + ∂ z ∂ y y = ∂ z ∂ u d u + ∂ z ∂ v d v \begin{aligned} dz&=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}y=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv \end{aligned} dz=xzdx+yzy=uzdu+vzdv

即,不论把函数 z z z看做自变量 x , y x,y x,y的函数,还是看做中间变量 u , v u,v u,v的函数,函数 z z z的全微分形式都是一样的

隐函数微分法

由方程组
{ F 1 ( x , y , u , v ) = 0 F 2 ( x , y , u , v ) = 0 \left\{\begin{aligned}&F_{1}(x,y,u,v)=0\\&F_{2}(x,y,u,v)=0\end{aligned}\right. {F1(x,y,u,v)=0F2(x,y,u,v)=0
确定的隐函数 u = u ( x , y ) , v = ( x , y ) u=u(x,y),v=(x,y) u=u(x,y),v=(x,y)
若要求 ∂ u ∂ x , ∂ u ∂ y , ∂ v ∂ x , ∂ v ∂ y \begin{aligned} \frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}\end{aligned} xu,yu,xv,yv,可以将每个方程分别对 x x x求偏导数,得出以 ∂ u ∂ x , ∂ v ∂ x \begin{aligned} \frac{\partial u}{\partial x},\frac{\partial v}{\partial x}\end{aligned} xu,xv为变量的方程组,可解得 ∂ u ∂ x , ∂ v ∂ x \begin{aligned} \frac{\partial u}{\partial x},\frac{\partial v}{\partial x}\end{aligned} xu,xv。同样,将每个方程分别对 y y y求偏导数,可以得出以 ∂ u ∂ y , ∂ v ∂ y \begin{aligned} \frac{\partial u}{\partial y},\frac{\partial v}{\partial y}\end{aligned} yu,yv为变量的方程组,解之可得 ∂ u ∂ y , ∂ v ∂ y \begin{aligned} \frac{\partial u}{\partial y},\frac{\partial v}{\partial y}\end{aligned} yu,yv

隐函数的偏导

如果实在不会用定理2判断隐函数的自变量和因变量,可以根据题目提问看谁是因变量,例如下题,显然是 u u u,谁是自变量,例如下题,显然是 x , y x,y x,y

例6:已知 u + e u = x y u+e^{u}=xy u+eu=xy,求 ∂ u ∂ x , ∂ u ∂ y , ∂ 2 u ∂ x ∂ y \begin{aligned} \frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial^{2} u}{\partial x \partial y}\end{aligned} xu,yu,xy2u

你可能感兴趣的:(高等数学,学习,高等数学)