遗传算法优化神经网络控制器代码

遗传算法为什么可以优化bp神经网络?

谷歌人工智能写作项目:神经网络伪原创

遗传算法优化bp神经网络,训练好后,做预测会更加准确?求大神告知!

matlab的遗传算法优化BP神经网络

对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。

本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。

步骤:未经遗传算法优化的BP神经网络建模1、 随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。

并将数据存储在data中待遗传算法中使用相同的数据。2、 数据预处理:归一化处理。3、 构建BP神经网络的隐层数,次数,步长,目标。

4、 使用训练数据input_train训练BP神经网络net。

神经网络和遗传算法有什么关系

遗传算法优化概率神经网络的matlab代码

原理大概是,设置一个初始种群,种群里的个体就是平滑因子,经过遗传算法的选择、交叉、变异后,逐渐找到一个最佳的spread,即为最终结果。

附件是一个GA-BP算法的程序,虽然不同,但是原理是相近的,可以参考。遗传算法的基本运算过程如下:a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。

b)个体评价:计算群体P(t)中各个个体的适应度。c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。

选择操作是建立在群体中个体的适应度评估基础上的。d)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。e)变异运算:将变异算子作用于群体。

即是对群体中的个体串的某些基因座上的基因值作变动。群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。

f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

关于神经网络,蚁群算法和遗传算法

神经网络并行性和自适应性很强,应用领域很广,在任何非线性问题中都可以应用,如控制、信息、预测等各领域都能应用。蚁群算法最开始应用于TSP问题,获得了成功,后来又广泛应用于各类组合优化问题。

但是该算法理论基础较薄弱,算法收敛性都没有得到证明,很多参数的设定也仅靠经验,实际效果也一般,使用中也常常早熟。遗传算法是比较成熟的算法,它的全局寻优能力很强,能够很快地趋近较优解。

主要应用于解决组合优化的NP问题。这三种算法可以相互融合,例如GA可以优化神经网络初始权值,防止神经网络训练陷入局部极小且加快收敛速度。

蚁群算法也可用于训练神经网络,但一定要使用优化后的蚁群算法,如最大-最小蚁群算法和带精英策略。

 

你可能感兴趣的:(神经网络,matlab,人工智能)