向图片中分别加入椒盐噪声、高斯噪声,使用四种不同的滤波器观察图片的处理效果(算术均值滤波、几何均值滤波 、谐波均值滤波 、逆谐波均值滤波)
import cv2
import numpy as np
import matplotlib.pyplot as plt
import scipy
import scipy.stats
import random
def GaussieNoisy(image,sigma):
# 高斯噪声
img = image.astype(np.int16) # 此步是为了避免像素点小于0,大于255的情况
mu = 0
for i in range(img.shape[0]):
for j in range(img.shape[1]):
for k in range(img.shape[2]):
img[i, j, k] = img[i, j, k] + random.gauss(mu=mu, sigma=sigma)
img[img > 255] = 255
img[img < 0] = 0
img = img.astype(np.uint8)
return img
def spNoisy(image,s_vs_p = 0.5,amount = 0.004):
# 椒盐噪声
out = np.copy(image)
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape]
out[tuple(coords)] = 1
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape]
out[tuple(coords)] = 0
return out
def ArithmeticMeanAlogrithm(image):
# 算术均值滤波
new_image = np.zeros(image.shape)
image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT)
for i in range(1,image.shape[0]-1):
for j in range(1,image.shape[1]-1):
new_image[i-1,j-1] = np.mean(image[i-1:i+2,j-1:j+2])
new_image = (new_image-np.min(image))*(255/np.max(image))
return new_image.astype(np.uint8)
def rgbArithmeticMean(image):
r,g,b = cv2.split(image)
r = ArithmeticMeanAlogrithm(r)
g = ArithmeticMeanAlogrithm(g)
b = ArithmeticMeanAlogrithm(b)
return cv2.merge([r,g,b])
def GeometricMeanOperator(roi):
roi = roi.astype(np.float64)
p = np.prod(roi)
return p ** (1 / (roi.shape[0] * roi.shape[1]))
def GeometricMeanAlogrithm(image):
# 几何均值滤波
new_image = np.zeros(image.shape)
image = cv2.copyMakeBorder(image, 1, 1, 1, 1, cv2.BORDER_DEFAULT)
for i in range(1, image.shape[0] - 1):
for j in range(1, image.shape[1] - 1):
new_image[i - 1, j - 1] = GeometricMeanOperator(image[i - 1:i + 2, j - 1:j + 2])
new_image = (new_image - np.min(image)) * (255 / np.max(image))
return new_image.astype(np.uint8)
def rgbGemotriccMean(image):
r,g,b = cv2.split(image)
r = GeometricMeanAlogrithm(r)
g = GeometricMeanAlogrithm(g)
b = GeometricMeanAlogrithm(b)
return cv2.merge([r,g,b])
def HarmonicMeanOperator(roi):
roi = roi.astype(np.float64)
if 0 in roi:
roi = 0
else:
roi = scipy.stats.hmean(roi.reshape(-1))
return roi
def HarmonicMeanAlogrithm(image):
# 谐波均值滤波
new_image = np.zeros(image.shape)
image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT)
for i in range(1,image.shape[0]-1):
for j in range(1,image.shape[1]-1):
new_image[i-1,j-1] =HarmonicMeanOperator(image[i-1:i+2,j-1:j+2])
new_image = (new_image-np.min(image))*(255/np.max(image))
return new_image.astype(np.uint8)
def rgbHarmonicMean(image):
r,g,b = cv2.split(image)
r = HarmonicMeanAlogrithm(r)
g = HarmonicMeanAlogrithm(g)
b = HarmonicMeanAlogrithm(b)
return cv2.merge([r,g,b])
def Contra_harmonicMeanOperator(roi,q):
roi = roi.astype(np.float64)
return np.mean((roi)**(q+1))/np.mean((roi)**(q))
def Contra_harmonicMeanAlogrithm(image,q):
# 逆谐波均值滤波
new_image = np.zeros(image.shape)
image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT)
for i in range(1,image.shape[0]-1):
for j in range(1,image.shape[1]-1):
new_image[i-1,j-1] = Contra_harmonicMeanOperator(image[i-1:i+2,j-1:j+2],q)
new_image = (new_image-np.min(image))*(255/np.max(image))
return new_image.astype(np.uint8)
def rgbContra_harmonicMean(image,q):
r,g,b = cv2.split(image)
r = Contra_harmonicMeanAlogrithm(r,q)
g = Contra_harmonicMeanAlogrithm(g,q)
b = Contra_harmonicMeanAlogrithm(b,q)
return cv2.merge([r,g,b])
if __name__ == '__main__':
house = cv2.imread("E:/pythontupian/6.jpg")
house = cv2.resize(cv2.cvtColor(house, cv2.COLOR_BGR2RGB), (200, 200))
plt.imshow(house)
plt.axis("off")
plt.title("Original Image")
plt.show() # 原图像
flagN = input("请选择加入的噪声:\n"
"高斯噪声 -- 1\n"
"椒盐噪声 -- 2\n")
if flagN == "1":
GuassHouse = GaussieNoisy(house,18)
plt.imshow(GuassHouse)
plt.axis("off")
plt.title("Gauss noise Image")
plt.show() # 加入高斯噪声后的图像
elif flagN == "2":
spHouse = spNoisy(house)
plt.imshow(spHouse)
plt.axis("off")
plt.title("Salt And peper Image")
plt.show() # 加入椒盐噪声后的图像
flagF = input("请选择滤波器:\n"
"算术均值滤波 -- a\n"
"几何均值滤波 -- b\n"
"谐波均值滤波 -- c\n"
"逆谐波均值滤波 -- d\n")
if flagF == "a":
if flagN == "1":
plt.imshow(rgbArithmeticMean(GuassHouse))
elif flagN == "2":
plt.imshow(rgbArithmeticMean(spHouse))
plt.title("Arithmetic Mean Filter")
plt.show() # Arithmetic Mean Filter
elif flagF == "b":
if flagN == "1":
plt.imshow(rgbGemotriccMean(GuassHouse))
elif flagN == "2":
plt.imshow(rgbGemotriccMean(spHouse))
plt.title("Geometric Mean Filter")
plt.show() # Geometric Mean Filter
elif flagF == "c":
if flagN == "1":
plt.imshow(rgbHarmonicMean(GuassHouse))
elif flagN == "2":
plt.imshow(rgbHarmonicMean(spHouse))
plt.title("Harmonic Mean Filter")
plt.show() # Harmonic Mean Filter
elif flagF == "d":
if flagN == "1":
plt.imshow(rgbContra_harmonicMean(GuassHouse,2))
elif flagN == "2":
plt.imshow(rgbContra_harmonicMean(spHouse,2))
plt.title("Contra-harmonic Mean Filter")
plt.show() # Contra-harmonic Mean Filter
图像处理系列博客:
图像处理之维纳滤波还原图像、直方图均值化【附代码、亲测有效】
图像处理之仿真运动模糊复原【使用逆滤波、维纳滤波】
图像处理/人工智能/opencv之深入理解模板匹配算法
图像处理/计算机视觉/python环境下如何用滤波器、算法恢复图片,对图片去污【附代码】
图像处理/计算机视觉/python环境下/机器学习 之k近邻方法(KNN)、模板匹配算法对数据集的识别
图像处理/计算机视觉/python环境下/如何用四种不同滤波器处理噪声【附代码、亲测有效】