Pytorch的RELU函数

4.1.2 激活函数

PyTorch实现了常见的激活函数,其具体的接口信息可参见官方文档1,这些激活函数可作为独立的layer使用。这里将介绍最常用的激活函数ReLU,其数学表达式为:

Pytorch的RELU函数_第1张图片

代码:

relu = nn.ReLU(inplace=True)
input = t.randn(2, 3)
print(input)
output = relu(input)
print(output) # 小于0的都被截断为0
# 等价于input.clamp(min=0)

结果:

tensor([[ 1.2836,  2.0970, -0.0456],
        [ 1.5909, -1.3795,  0.5264]])
tensor([[ 1.2836,  2.0970,  0.0000],
        [ 1.5909,  0.0000,  0.5264]])

 

ReLU函数有个inplace参数,如果设为True,它会把输出直接覆盖到输入中,这样可以节省内存/显存。之所以可以覆盖是因为在计算ReLU的反向传播时,只需根据输出就能够推算出反向传播的梯度。但是只有少数的autograd操作支持inplace操作(如tensor.sigmoid_()),除非你明确地知道自己在做什么,否则一般不要使用inplace操作。

在以上的例子中,基本上都是将每一层的输出直接作为下一层的输入,这种网络称为前馈传播网络(feedforward neural network)。对于此类网络如果每次都写复杂的forward函数会有些麻烦,在此就有两种简化方式,ModuleList和Sequential。其中Sequential是一个特殊的module,它包含几个子Module,前向传播时会将输入一层接一层的传递下去。ModuleList也是一个特殊的module,可以包含几个子module,可以像用list一样使用它,但不能直接把输入传给ModuleList。下面举例说明。

代码:


# Sequential的三种写法
net1 = nn.Sequential()
net1.add_module('conv', nn.Conv2d(3, 3, 3))
net1.add_module('batchnorm', nn.BatchNorm2d(3))
net1.add_module('activation_layer', nn.ReLU())

net2 = nn.Sequential(
        nn.Conv2d(3, 3, 3),
        nn.BatchNorm2d(3),
        nn.ReLU()
        )

from collections import OrderedDict
net3= nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(3, 3, 3)),
          ('bn1', nn.BatchNorm2d(3)),
          ('relu1', nn.ReLU())
        ]))
print('net1:', net1)
print('net2:', net2)
print('net3:', net3)

输出:

net1: Sequential(
  (conv): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (batchnorm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (activation_layer): ReLU()
)
net2: Sequential(
  (0): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (1): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU()
)
net3: Sequential(
  (conv1): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (bn1): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu1): ReLU()

# 可根据名字或序号取出子module,
代码:

# 可根据名字或序号取出子module
net1.conv, net2[0], net3.conv1

输出:
(Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1)),
 Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1)),
 Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1)))

代码:

input = t.rand(1, 3, 4, 4)
output1 = net1(input)
output2 = net2(input)
output3 = net3(input)
output4 = net3.relu1(net1.batchnorm(net1.conv(input)))
print('output1',output1)
print('output2',output2)
print('output3',output3)
print('output4',output4)

结果:

output1 tensor([[[[0.4223, 0.0000],
          [0.0000, 1.4133]],
         [[0.0000, 0.0343],
          [0.8903, 0.7163]],
         [[0.9817, 0.0000],
          [0.7821, 0.0000]]]], grad_fn=)
output2 tensor([[[[0.0000, 0.5348],
          [1.0742, 0.0000]],
         [[1.2695, 0.0000],
          [0.0000, 0.3837]],
         [[0.0000, 0.0000],
          [1.6453, 0.0000]]]], grad_fn=)
output3 tensor([[[[0.1690, 0.7540],
          [0.0000, 0.7581]],
         [[1.6805, 0.0000],
          [0.0000, 0.0000]],
         [[0.2216, 0.5082],
          [0.9433, 0.0000]]]], grad_fn=)
output4 tensor([[[[0.4223, 0.0000],
          [0.0000, 1.4133]],
         [[0.0000, 0.0343],
          [0.8903, 0.7163]],
         [[0.9817, 0.0000],
          [0.7821, 0.0000]]]], grad_fn=)

ModuleList是Module的子类,代码: 

modellist = nn.ModuleList([nn.Linear(3,4), nn.ReLU(), nn.Linear(4,2)])
input = t.randn(1, 3)
for model in modellist:
    input = model(input)
# 下面会报错,因为modellist没有实现forward方法
# output = modelist(input)

 

你可能感兴趣的:(Pytorch,pytorch,Relu,激活函数)