redis学习笔记——第六章复制

第六章 复制

6.1 配置

6.1.1 建立复制

​ 参与复制的Redis实例划分为主节点(master)和从节点(slave)。默认情况下,Redis都是主节点。每个从节点只能有一个主节点,而主节点可以同时具有多个从节点。复制的数据流是单向的,只能由主节点复制到从节
点。配置复制的方式有以下三种:

  1. 在配置文件中加入slaveof{masterHost}{masterPort}随Redis启动生效.
  2. 在redis-server启动命令后加入–slaveof{masterHost}{masterPort}生效。
  3. 直接使用命令:slaveof{masterHost}{masterPort}生效。

可以使用info replication命令查看复制相关状态

6.1.2 断开复制

​ slaveof命令不但可以建立复制,还可以在从节点执行slaveof no one来断开与主节点复制关系

断开复制主要流程:

  1. 断开与主节点复制关系
  2. 从节点晋升为主节点

从节点断开复制后并不会抛弃原有数据,只是无法再获取主节点上的数据变化。

​ 通过slaveof命令还可以实现切主操作,所谓切主是指把当前从节点对主节点的复制切换到另一个主节点。执行slaveof{newMasterIp}{newMasterPort}命令即可,

切主操作流程如下:

1. 	断开与旧主节点复制关系
2. 	与新主节点建立复制关系
3. 	删除从节点当前所有数据
4. 	对新主节点进行复制操作。
6.1.3 安全性

​ 对于数据比较重要的节点,主节点会通过设置requirepass参数进行密码验证,这时所有的客户端访问必须使用auth命令实行校验。从节点与主节点的复制连接是通过一个特殊标识的客户端来完成,因此需要配置从节点的masterauth参数与主节点密码保持一致,这样从节点才可以正确地连接到主节点并发起复制流程。

6.1.4 只读

​ 默认情况下,从节点使用slave-read-only=yes配置为只读模式。由于复制只能从主节点到从节点,对于从节点的任何修改主节点都无法感知,修改从节点会造成主从数据不一致。因此建议线上不要修改从节点的只读模式。

6.1.5 传输延迟

​ 主从节点一般部署在不同机器上,复制时的网络延迟就成为需要考虑的问题,Redis为我们提供了repl-disable-tcp-nodelay参数用于控制是否关闭TCP_NODELAY,默认关闭,说明如下:

1. 当关闭时,主节点产生的命令数据无论大小都会及时地发送给从节点,这样主从之间延迟会变小,但增加了网络带宽的消耗。适用于主从之间的**网络环境良好的场景,如同机架或同机房部署**
2. 当开启时,主节点会合并较小的TCP数据包从而节省带宽。默认发送时间间隔取决于Linux的内核,一般默认为40毫秒。这种配置节省了带宽但增大主从之间的延迟。**适用于主从网络环境复杂或带宽紧张的场景,如跨机房部署。**

6.2 拓扑

​ Redis的复制拓扑结构可以支持单层或多层复制关系,根据拓扑复杂性可以分为以下三种:一主一从、一主多从、树状主从结构.

  1. 一主一从结构
    一主一从结构是最简单的复制拓扑结构,用于主节点出现宕机时从节点提供故障转移支持。当应用写命令并发量较高且需要持久化时,可以只在从节点上开启AOF,这样既保证数据安全性同时也避免了持久化对主节点的性能干扰。但需要注意的是,当主节点关闭持久化功能时,如果主节点脱机要避免自动重启操作。因为主节点之前没有开启持久化功能自动重启后数据集为空,这时从节点如果继续复制主节点会导致从节点数据也被清空的情况,丧失了持久化的意义。安全的做法是在从节点上执行slaveof no one断开与主节点的复制关系,再重启主节点从而避免这一问题。redis学习笔记——第六章复制_第1张图片

  2. 一主多从结构
    redis学习笔记——第六章复制_第2张图片
    ​ 一主多从结构(又称为星形拓扑结构)使得应用端可以利用多个从节点实现读写分离。对于读占比较大的场景,可以把读命令发送到从节点来分担主节点压力。同时在日常开发中如果需要执行一些比较耗时的读命令,如:keys、sort等,可以在其中一台从节点上执行,防止慢查询对主节点造成阻塞从而影响线上服务的稳定性。对于写并发量较高的场景,多个从节点会导致主节点写命令的多次发送从而过度消耗网络带宽,同时也加重了主节点的负载影响服务稳定性。

  3. 树状主从结构
    redis学习笔记——第六章复制_第3张图片
    ​ 树状主从结构(又称为树状拓扑结构)使得从节点不但可以复制主节点数据,同时可以作为其他从节点的主节点继续向下层复制。通过引入复制中间层,可以有效降低主节点负载和需要传送给从节点的数据量,数据写入节点A后会同步到B和C节点,B节点再把数据同步到D和E节点,数据实现了一层一层的向下复制。当主节点需要挂载多个从节点时为了避免对主节点的性能干扰,可以采用树状主从结构降低主节点压力。

6.3 原理

6.3.1 复制过程

redis学习笔记——第六章复制_第4张图片

  1. 保存主节点(master)信息。
  2. 从节点(slave)内部通过每秒运行的定时任务维护复制相关逻辑,当定时任务发现存在新的主节点后,会尝试与该节点建立网络连接,如果从节点无法建立连接,定时任务会无限重试直到连接成功或者执行slaveof no one取消复制
  3. 发送ping命令, 如网络超时或者主节点正在阻塞无法响应命令,从节点会断开复制连接,下次定时任务会发起重连
  4. 权限验证。如果主节点设置了requirepass参数,则需要密码验证,从节点必须配置masterauth参数保证与主节点相同的密码才能通过验证;如果验证失败复制将终止,从节点重新发起复制流程
  5. 同步数据集
  6. 命令持续复制
6.3.2 数据同步
  1. 全量复制:一般用于初次复制场景,Redis早期支持的复制功能只有全量复制,它会把主节点全部数据一次性发送给从节点,当数据量较大时,会对主从节点和网络造成很大的开销
  2. 部分复制::用于处理在主从复制中因网络闪断等原因造成的数据丢失场景,当从节点再次连上主节点后,如果条件允许,主节点会补发丢失数据给从节点。因为补发的数据远远小于全量数据,可以有效避免全量复制的过高开销。

psync命令运行需要以下组件支持

  1. 主从节点各自复制偏移量
  2. 主节点复制积压缓冲区
  3. 主节点运行id

1.复制偏移量

​ 参与复制的主从节点都会维护自身复制偏移量。主节点(master)在处理完写入命令后,会把命令的字节长度做累加记录,统计信息在info relication中的master_repl_offset指标中:

​ 从节点(slave)每秒钟上报自身的复制偏移量给主节点,因此主节点也会保存从节点的复制偏移量,

​ 从节点在接收到主节点发送的命令后,也会累加记录自身的偏移量。统计信息在info relication中的slave_repl_offset指标中
​ 通过对比主从节点的复制偏移量,可以判断主从节点数据是否一致。

2.复制积压缓冲区

​ 复制积压缓冲区是保存在主节点上的一个固定长度的队列,默认大小为1MB,当主节点有连接的从节点(slave)时被创建,这时主节点(master)响应写命令时,不但会把命令发送给从节点,还会写入复制积压缓冲

由于缓冲区本质上是先进先出的定长队列,所以能实现保存最近已复制数据的功能,用于部分复制和复制命令丢失的数据补救

3.主节点运行ID
每个Redis节点启动后都会动态分配一个40位的十六进制字符串作为运行ID。运行ID的主要作用是用来唯一识别Redis节点,比如从节点保存主节点的运行ID识别自己正在复制的是哪个主节点,需要注意的是Redis关闭再启动后,运行ID会随之改变

​ 当需要调优一些内存相关配置,例如:hash-max-ziplist-value等,这些配置需要Redis重新加载才能优化已存在的数据,这时可以使用debug reload命令重新加载RDB并保持运行ID不变,从而有效避免不必要的全量复制。

4.psync命令
从节点使用psync命令完成部分复制和全量复制功能,命令格式:psync{runId}{offset}
runId:从节点所复制主节点的运行id。
offset:当前从节点已复制的数据偏移量
redis学习笔记——第六章复制_第5张图片

流程说明:

  1. 从节点(slave)发送psync命令给主节点,参数runId是当前从节点保存的主节点运行ID,如果没有则默认值为,参数offset是当前从节点保存的复制偏移量,如果是第一次参与复制则默认值为-1。
  2. 主节点(master)根据psync参数和自身数据情况决定响应结果:
    如果回复+FULLRESYNC{runId}{offset},那么从节点将触发全量复制
    如果回复+CONTINUE,从节点将触发部分复制流程
    如果回复+ERR,说明主节点版本低于Redis2.8,无法识别psync命令,从节点将发送旧版的sync命令触发全量复制流程
6.3.3 全量复制

​ 全量复制是Redis最早支持的复制方式,也是主从第一次建立复制时必须经历的阶段。触发全量复制的命令是sync和psync,

​ 这里主要介绍psync全量复制流程:

  1. 发送psync命令进行数据同步,由于是第一次进行复制,从节点没有复制偏移量和主节点的运行ID,所以发送psync-1
  2. 主节点根据psync-1解析出当前为全量复制,回复+FULLRESYNC响应。
  3. 从节点接收主节点的响应数据保存运行ID和偏移量offset
  4. 主节点执行bgsave保存RDB文件到本地
  5. 主节点发送RDB文件给从节点,从节点把接收的RDB文件保存在本地并直接作为从节点的数据文件,接收完RDB后从节点打印相关日志
  6. 对于从节点开始接收RDB快照到接收完成期间,主节点仍然响应读写命令,因此主节点会把这期间写命令数据保存在复制客户端缓冲区内,当从节点加载完RDB文件后,主节点再把缓冲区内的数据发送给从节点,保证
    主从之间数据一致性
  7. 从节点接收完主节点传送来的全部数据后会清空自身旧数据
  8. 从节点清空数据后开始加载RDB文件
  9. 从节点成功加载完RDB后,如果当前节点开启了AOF持久化功能,它会立刻做bgrewriteaof操作,为了保证全量复制后AOF持久化文件立刻可用
6.3.4 部分复制

redis学习笔记——第六章复制_第6张图片
​ 部分复制主要是Redis针对全量复制的过高开销做出的一种优化措施,使用psync{runId}{offset}命令实现。当从节点(slave)正在复制主节点(master)时,如果出现网络闪断或者命令丢失等异常情况时,从节点会向主节点要求补发丢失的命令数据,如果主节点的复制积压缓冲区内存在这部分数据则直接发送给从节点,这样就可以保持主从节点复制的一致性。补发的这部分数据一般远远小于全量数据,所以开销很小

流程说明:

  1. 当主从节点之间网络出现中断时,如果超过repl-timeout时间,主节点会认为从节点故障并中断复制连接,
  2. 主从连接中断期间主节点依然响应命令,但因复制连接中断命令无法发送给从节点,不过主节点内部存在的复制积压缓冲区,依然可以保存最近一段时间的写命令数据,默认最大缓存1M
  3. 当主从节点网络恢复后,从节点会再次连上主节点
  4. 当主从连接恢复后,由于从节点之前保存了自身已复制的偏移量和主节点的运行ID。因此会把它们当作psync参数发送给主节点,要求进行部分复制操作
  5. 主节点接到psync命令后首先核对参数runId是否与自身一致,如果一致,说明之前复制的是当前主节点;之后根据参数offset在自身复制积压缓冲区查找,如果偏移量之后的数据存在缓冲区中,则对从节点发送+CONTINUE响应,表示可以进行部分复制
  6. 主节点根据偏移量把复制积压缓冲区里的数据发送给从节点,保证主从复制进入正常状态。发送的数据量可以在主节点的日志获取
6.3.5 心跳

redis学习笔记——第六章复制_第7张图片
主从节点在建立复制后,它们之间维护着长连接并彼此发送心跳命令,

主从心跳判断机制:

  1. 主从节点彼此都有心跳检测机制,各自模拟成对方的客户端进行通信,通过client list命令查看复制相关客户端信息,主节点的连接状态为flags=M,从节点连接状态为flags=S。
  2. 主节点默认每隔10秒对从节点发送ping命令,判断从节点的存活性和连接状态。可通过参数repl-ping-slave-period控制发送频率。
  3. 从节点在主线程中每隔1秒发送replconf ack{offset}命令,给主节点上报自身当前的复制偏移量
6.3.6 异步复制

​ 主节点不但负责数据读写,还负责把写命令同步给从节点。写命令的发送过程是异步完成,也就是说主节点自身处理完写命令后直接返回给客户端,并不等待从节点复制完成

主节点复制流程:

  1. 主节点6379接收处理命令
  2. 命令处理完之后返回响应结果
  3. 对于修改命令异步发送给6380从节点,从节点在主线程中执行复制的命令。
6.4.1 读写分离

​ 对于读占比较高的场景,可以通过把一部分读流量分摊到从节点(slave)来减轻主节点(master)压力,同时需要注意永远只对主节点执行写操作
redis学习笔记——第六章复制_第8张图片
当使用从节点响应读请求时,业务端可能会遇到如下问题:

  1. 复制数据延迟。
  2. 读到过期数据
  3. 从节点故障

1.数据延迟
Redis复制数据的延迟由于异步复制特性是无法避免的,延迟取决于网络带宽和命令阻塞情况,比如刚在主节点写入数据后立刻在从节点上读取可能获取不到。需要业务场景允许短时间内的数据延迟。对于无法容忍大量延迟场景,可以编写外部监控程序监听主从节点的复制偏移量,当延迟较大时触发报警或者通知客户端避免读取延迟过高的从节点

2.读到过期数据
当主节点存储大量设置超时的数据时,如缓存数据,Redis内部需要维护过期数据删除策略,删除策略主要有两种:惰性删除和定时删除
惰性删除:主节点每次处理读取命令时,都会检查键是否超时,如果超时则执行del命令删除键对象,之后del命令也会异步发送给从节点。需要注意的是为了保证复制的一致性,从节点自身永远不会主动删除超时数据,

定时删除:Redis主节点在内部定时任务会循环采样一定数量的键,当发现采样的键过期时执行del命令,之后再同步给从节点

​ 如果此时数据大量超时,主节点采样速度跟不上过期速度且主节点没有读取过期键的操作,那么从节点将无法收到del命令。这时在从节点上可以读取到已经超时的数据。Redis在3.2版本解决了这个问题,从节点读取数据
之前会检查键的过期时间来决定是否返回数据,

3.从节点故障问题
对于从节点的故障问题,需要在客户端维护可用从节点列表,当从节点故障时立刻切换到其他从节点或主节点上。

本章重点回顾

  1. Redis通过复制功能实现主节点的多个副本。从节点可灵活地通过slaveof命令建立或断开复制流程。
  2. 复制支持树状结构,从节点可以复制另一个从节点,实现一层层向下的复制流。Redis2.8之后复制的流程分为:全量复制和部分复制。全量复制需要同步全部主节点的数据集,大量消耗机器和网络资源。而部分复制有
    效减少因网络异常等原因造成的不必要全量复制情况。通过配置合理的复制积压缓冲区尽量避免全量复制。
  3. 主从节点之间维护心跳和偏移量检查机制,保证主从节点通信正常和数据一致。
  4. Redis为了保证高性能复制过程是异步的,写命令处理完后直接返回给客户端,不等待从节点复制完成。因此从节点数据集会有延迟情况。
  5. 当使用从节点用于读写分离时会存在数据延迟、过期数据、从节点可用性等问题,需要根据自身业务提前作出规避。
  6. 在运维过程中,主节点存在多个从节点或者一台机器上部署大量主节点的情况下,会有复制风暴的风险。

你可能感兴趣的:(redis)