索引是帮助 MySQL 高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查询算法,这种数据结构就是索引。
那我们为什么需要使用索引呢?
假设现在有一张表结构如下:
此时我们需要执行一条sql语句: select * from user where age = 45
如果我们没有建立索引,数据库就会从第一行开始扫描,一直扫描到最后一行,这种我们称之为全表扫描,性能很低
如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。
这样的话,如果我们要查找年龄为45的行数据,只需要经过三次扫描便可以查找到,极大的提高了查找效率
注意:这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并不是索引的真实结构,索引的真实结构,后面会详细介绍。
索引的优缺点可以概括如下:
优点 | 缺点 |
---|---|
提高数据检索效率,降低数据库的IO成本 | 索引列也是要占用空间的 |
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗 | 索引大大提高了查询效率,但降低了更新的速度,比如 INSERT、UPDATE、DELETE |
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:
索引结构 | 描述 |
---|---|
B+Tree | 最常见的索引类型,大部分引擎都支持B+树索引 |
Hash | 底层数据结构是用哈希表实现,只有精确匹配索引列的查询才有效,不支持范围查询 |
R-Tree(空间索引) | 空间索引是 MyISAM 引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少 |
Full-Text(全文索引) | 是一种通过建立倒排索引,快速匹配文档的方式,类似于 Lucene, Solr, ES |
上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持情况:
索引 | InnoDB | MyISAM | Memory |
---|---|---|---|
B+Tree索引 | 支持 | 支持 | 支持 |
Hash索引 | 不支持 | 不支持 | 支持 |
R-Tree索引 | 不支持 | 支持 | 不支持 |
Full-text | 5.6版本后支持 | 支持 | 不支持 |
我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引,那么为什么使用B+树作为索引结构,而不是其他的树呢?
假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:
如果主键是顺序插入的,则会形成一个单向链表,结构如下:
所以,如果选择二叉树作为索引结构,会存在以下缺点:
此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数据,最终形成的数据结构也是一颗平衡的二叉树,结构如下:
红黑树也存在大数据量情况下,层级较深,检索速度慢的问题。
B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。以一颗最大度数为5的b-tree为例,那这个B树每个节点最多存储4个key,5个指针:
我们可以通过一个数据结构可视化的网站来简单演示一下: https://www.cs.usfca.edu/~galles/visualization/BTree.html(演示视频:https://www.bilibili.com/video/BV1Kr4y1i7ru?p=68)
插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 ,然后观察一些数据插入过程中,节点的变化情况
可以观察到B树具有如下特点:
B+Tree是B-Tree的变种,我们以一颗最大度数为4的b+tree为例,来看一下其结构示意图:
我们可以看到图中的两部分:
蓝色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
绿色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。
我们可以通过一个数据结构可视化的网站来简单演示一下:https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 ,然后观察一些数据插入过程中,节点的变化情况
最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:
所有的数据都会出现在叶子节点。
叶子节点形成一个单向链表。
非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。
上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的B+Tree。
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。
MySQL中除了支持B+Tree索引,还支持一种索引类型:Hash索引。
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
Hash索引具有如下特点:
在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。
思考:为什么 InnoDB 存储引擎选择使用 B+Tree 索引结构?
- 相对于二叉树,层级更少,搜索效率高
- 由于索引的每个节点都会使用一页(page)来存储,对于 B-Tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针也跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低,另外,由于B+树的每个非叶子节点都只存放索引,因此IO效率很高
- 相对于 Hash 索引,B+Tree 支持范围匹配及排序操作
在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。
分类 | 含义 | 特点 | 关键字 |
---|---|---|---|
主键索引 | 针对于表中主键创建的索引 | 默认自动创建,只能有一个 | PRIMARY |
唯一索引 | 避免同一个表中某数据列中的值重复 | 可以有多个 | UNIQUE |
常规索引 | 快速定位特定数据 | 可以有多个 | |
全文索引 | 全文索引查找的是文本中的关键词,而不是比较索引中的值 | 可以有多个 | FULLTEXT |
在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:
分类 | 含义 | 特点 |
---|---|---|
聚集索引(Clustered Index) | 将数据存储与索引放一块,索引结构的叶子节点保存了行数据 | 必须有,而且只有一个 |
二级索引(Secondary Index) | 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
聚集索引选取规则:
聚集索引和二级索引的具体结构如下:
由上图中,我们可以观察到聚集索引与二级索引的以下区别:
接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。
具体过程如下:
这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方式,就称之为回表查询。
1.以下 SQL 语句,哪个执行效率高?为什么?
select * from user where id = 10;
select * from user where name = 'Arm';
-- 备注:id为主键,name字段创建的有索引
A 语句的执行性能要高于B 语句。因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然后再查询聚集索引,也就是需要进行回表查询。
2. InnoDB 主键索引的 B+Tree 高度为多少?
假设一行数据大小为1k,一页中可以存储16行这样的数据,InnoDB 的指针占用6个字节的空间,主键假设为bigint,占用字节数为8。
当树的高度为2时:
n * 8 + (n + 1) * 6 = 16*1024 , 算出n约为 1170
1171* 16 = 18736
也就是说,如果树的高度为2,则可以存储 18000 多条记录。
当树的高度为3时:
1171 * 1171 * 16 = 21939856
也就是说,如果树的高度为3,则可以存储 2200w 左右的记录。
创建索引:
CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (index_col_name, ...);
索引类型参数UNIQUE代表唯一索引,FULLTEXT代表全文索引,如果不加索引类型参数,则创建的是常规索引
查看索引:
SHOW INDEX FROM table_name;
删除索引:
DROP INDEX index_name ON table_name;
假设现有表结构:
create table tb_user(
id int primary key auto_increment comment '主键',
name varchar(50) not null comment '用户名',
phone varchar(11) not null comment '手机号',
email varchar(100) comment '邮箱',
profession varchar(11) comment '专业',
age tinyint unsigned comment '年龄',
gender char(1) comment '性别 , 1: 男, 2: 女',
status char(1) comment '状态',
createtime datetime comment '创建时间'
) comment '系统用户表';
接下来需要我们完成如下需求:
name字段为姓名字段,该字段的值可能会重复,为该字段创建索引
create index idx_user_name on tb_user(name);
phone手机号字段的值非空,且唯一,为该字段创建唯一索引
create unique index idx_user_phone on tb_user (phone);
为profession, age, status创建联合索引
create index idx_user_pro_age_stat on tb_user(profession, age, status);
为email建立合适的索引来提升查询效率
create index idx_user_email on tb_user(email);
完成上述的需求之后,我们再查看tb_user表的所有的索引数据。
show index from tb_user;
删除idx_user_name
索引
drop index idx_user_name ON tb_user;
在进一步学习索引之前,我们需要先对常用的几种sql性能分析手段进行了解
MySQL 客户端连接成功后,可以通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:
-- session 是查看当前会话 ;
-- global 是查询全局数据 ;
SHOW GLOBAL STATUS LIKE 'Com_______';
我们可以在当前数据库再执行几次查询操作,然后再次查看执行频次,看看 Com_select 参数会不会变化。
通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以查询为主,那么就要考虑对数据库的索引进行优化了。
那假如说当前数据表是以查询为主,我们又该如何定位针对于那些查询语句进行优化呢? 这时我们可以借助于慢查询日志。
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log:
如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:
# 开启MySQL慢日志查询开关
slow_query_log=1
# 设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2
配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息/var/lib/mysql/localhost-slow.log。
systemctl restart mysqld
测试:
在数据库中预先准备两张表,一张tb_user表,表中存放几十条左右的数据,另一张tb_sku表,存放1000w条数据,分别执行以下sql
select * from tb_user; -- 这条SQL执行效率比较高, 执行耗时 0.00sec
select count(*) from tb_sku; -- 由于tb_sku表中, 预先存入了1000w的记录, count一次,耗时 13.35sec
第二条sql的执行结果如下:
很明显,这条sql的执行时长已经超过了我们预设的慢查询日志的时长(2秒),此时我们可以查看一下慢查询日志:
最终我们发现,在慢查询日志中,只会记录执行时间超多我们预设时间(2s)的SQL,执行较快的SQL是不会记录的,那这样,通过慢查询日志,就可以定位出执行效率比较低的SQL,从而有针对性的进行优化。
show profile 能在做SQL优化时帮我们了解时间都耗费在哪里。通过 have_profiling 参数,能看到当前 MySQL 是否支持 profile 操作:
SELECT @@have_profiling;
可以看到,当前MySQL是支持 profile操作的,但是开关是关闭的。可以通过set语句在session/global级别开启profiling:
SET profiling = 1;
开关已经打开了,接下来,我们所执行的SQL语句,都会被MySQL记录,并记录执行时间分别消耗在哪些阶段。 我们直接执行如下的SQL语句:
select * from tb_user;
select * from tb_user where id = 1;
select * from tb_user where name = '白起';
select count(*) from tb_sku;
我们可以通过如下指令查看上述sql语句的执行耗时:
--查看所有语句的耗时:
show profiles;
--查看指定query_id的SQL语句各个阶段的耗时:
show profile for query query_id;
--查看指定query_id的SQL语句CPU的使用情况
show profile cpu for query query_id;
EXPLAIN 或者 DESC 命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。
语法:
-- 直接在select语句之前加上关键字
explain / desc EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;
例如,现在要查询select * from tb_user where id = 1
的执行信息,就可以使用如下命令:
explain select * from tb_user where id = 1
执行结果如下:
Explain 执行计划中各个字段的含义:
字段 | 含义 |
---|---|
id | select 查询的序列号,表示查询中执行 select 子句或者操作表的顺序(id相同,执行顺序从上到下;id不同,值越大越先执行),当我们使用的是联表查询或者子查询时就可以通过该字段判断哪张表先被执行或者哪个sql子句先被执行 |
select_type | 表示 SELECT 的类型,常见取值有 SIMPLE(简单表,即不适用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等 |
type | 表示连接类型,性能由好到差的连接类型为 NULL(没有访问任何表)、system(访问了系统表)、const(根据主键或唯一索引访问)、eq_ref、ref(使用非唯一性的索引)、range、index(使用了索引,但是也扫描了整个索引树)、all(全表扫描) |
possible_key | 当前执行的sql语句可能会使用的索引,可以为一个或多个 |
Key | 实际使用的索引,如果为 NULL,则没有使用索引 |
Key_len | 示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下,长度越短越好 |
rows | MySQL认为必须要执行的行数,在InnoDB引擎的表中,是一个估计值,可能并不总是准确的 |
filtered | 表示返回结果的行数占需读取行数的百分比,filtered的值越大越好 |
我们可以通过一个简单的案例,来验证一下索引,看看是否能够通过索引来提升数据查询性能。在演示的时候,我们还是使用之前准备的一张表 tb_sku , 在这张表中准备了1000w的记录。
这张表中id为主键,有主键索引,而其他字段是没有建立索引的。 我们先来查询其中的一条记录,看看里面的字段情况,执行如下SQL:
select * from tb_sku where id = 1\G;
可以看到即使有1000w的数据,根据id进行数据查询,性能依然很快,因为主键id是有索引的。 那么接下来,我们再来根据 sn 字段进行查询,执行如下SQL:
SELECT * FROM tb_sku WHERE sn = '100000003145001';
我们可以看到根据sn字段进行查询,查询返回了一条数据,结果耗时 20.78sec,就是因为sn没有索引,而造成查询效率很低。那么我们可以针对于sn字段,建立一个索引,建立了索引之后,我们再次根据sn进行查询,再来看一下查询耗时情况。
创建索引:
create index idx_sku_sn on tb_sku(sn) ;
通过上图可以看到,由于数据量很大的缘故,建立索引也耗费了很长的时间
建立完索引后,我们再次执行相同的SQL语句,再次查看SQL的耗时。
SELECT * FROM tb_sku WHERE sn = '100000003145001';
我们明显会看到,sn字段建立了索引之后,查询性能大大提升。建立索引前后,查询耗时都不是一个数量级的。
如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
以 tb_user 表为例,我们先来查看一下之前 tb_user 表所创建的索引。
在 tb_user 表中,有一个联合索引,这个联合索引涉及到三个字段,顺序分别为:profession,age,status。
对于最左前缀法则指的是,查询时,最左变的列,也就是profession必须存在,否则索引全部失效。而且中间不能跳过某一列,否则该列后面的字段索引将失效。 接下来,我们来演示几组案例,看一下具体的执行计划:
explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
explain select * from tb_user where profession = '软件工程' and age = 31;
explain select * from tb_user where profession = '软件工程';
以上的这三组测试中,我们发现只要联合索引最左边的字段 profession存在,索引就会生效,不过我们也观察到了每一次测试索引的长度key_len都是不同的,我们可以根据key_len长度的变化推测出profession字段索引长度为47、age字段索引长度为2、status字段索引长度为5。
接下来,我们在进行两组测试:
explain select * from tb_user where age = 31 and status = '0';
explain select * from tb_user where status = '0';
通过上面的这两组测试,我们可以看到索引并未生效,原因是因为我们在编写sql语句时,查询条件中没有带 profession字段,不满足最左前缀法则,联合索引最左边的列profession不存在。
我们再来看看以下sql语句的执行计划
explain select * from tb_user where profession = '软件工程' and status = '0';
上述的SQL查询时,存在profession字段,最左边的列是存在的,索引满足最左前缀法则的基本条件。但是查询时,跳过了age这个列,所以后面的列索引是不会使用的,也就是索引部分生效,只有profession字段的索引生效了,所以索引的长度就是47。
思考题:
当执行SQL语句: explain select * from tb_user where age = 31 andstatus = ‘0’ and profession = ‘软件工程’; 时,是否满足最左前缀法则,走不走上述的联合索引,索引长度又是多少?
观察上述sql语句的执行计划:
可以看到,是完全满足最左前缀法则的,索引长度54,联合索引是生效的。
因此,最左前缀法则中指的最左边的列,是指在查询时,联合索引的最左边的字段(即是第一个字段)必须存在,与我们编写SQL时,条件编写的先后顺序无关。
联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。
explain select * from tb_user where profession = '软件工程' and age > 30 and status = '0';
当范围查询使用> 或 < 时,走联合索引了,但是索引的长度为49,就说明范围查询右边的status字段是没有走索引的。
针对上述问题,在业务允许的情况下,我们可以使用类似于 >= 或 <= 这类的范围查询来避免使用 > 或 <
explain select * from tb_user where profession = '软件工程' and age >= 30 and status = '0';
可以看到当我们使用>= 或 <= 时,不仅走了联合索引,而且索引的长度为54,这说明所有的字段都是走索引的。
如果我们在索引列上进行了运算操作, 那么索引将失效。
在tb_user表中,除了前面介绍的联合索引之外,还有一个索引,是phone字段的单列索引。
当根据phone字段进行等值匹配查询时, 索引生效:
explain select * from tb_user where phone = '17799990015';
当根据phone字段进行函数运算操作之后,索引失效:
explain select * from tb_user where substring(phone,10,2) = '15';
字符串类型字段使用时,不加引号,索引将失效。
接下来,我们通过两组示例,来看看对于字符串类型的字段,加单引号与不加单引号的区别:
explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
explain select * from tb_user where profession = '软件工程' and age = 31 and status = 0;
explain select * from tb_user where phone = '17799990015';
explain select * from tb_user where phone = 17799990015;
经过上面两组示例,我们会明显的发现,如果字符串不加单引号,对于查询结果,没什么影响,但是数据库存在隐式类型转换,索引将失效
如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
接下来,我们来看一下这三条SQL语句的执行效果,查看一下其执行计划:
由于下面查询语句中,都是根据profession字段查询,符合最左前缀法则,联合索引是可以生效的,我们主要看一下,模糊查询时,%加在关键字之前,和加在关键字之后的影响。
explain select * from tb_user where profession like '软件%';
explain select * from tb_user where profession like '%工程';
explain select * from tb_user where profession like '%工%';
经过上述的测试,我们发现,在like模糊查询中,在关键字后面加%,索引可以生效。而如果在关键字前面加了%,索引将会失效。
用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。
explain select * from tb_user where id = 10 or age = 23;
explain select * from tb_user where phone = '17799990017' or age = 23;
由于age没有索引,所以即使id、phone有索引,索引也会失效。所以需要针对于age也要建立索引。
create index idx_user_age on tb_user(age);
建立了索引之后,我们再次执行上述的SQL语句,看看前后执行计划的变化
最终,我们发现,当or连接的条件,左右两侧字段都有索引时,索引才会生效。
mysql在执行sql语句前,会先进行一次评估,如果评估使用索引比直接使用全表扫描更慢,则不使用索引。
-- 注意,当前数据表中,phone >= '17799990005'的数据的比重大于百分之五十,phone >= '17799990015'的数据的比重小于百分之五十
select * from tb_user where phone >= '17799990005';
select * from tb_user where phone >= '17799990015';
经过测试我们发现,相同的SQL语句,只是传入的字段值不同,最终的执行计划也完全不一样,这是为什么呢?
就是因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。
接下来,我们再来看看 is null 与 is not null 操作是否走索引
执行如下两条语句 :
explain select * from tb_user where profession is null;
explain select * from tb_user where profession is not null;
接下来,我们做一个操作将profession字段值全部更新为null。
然后,再次执行上述的两条SQL,查看SQL语句的执行计划
最终我们看到,一模一样的SQL语句,先后执行了两次,结果查询计划是不一样的,为什么会出现这种现象,这是和数据库的数据分布有关系。查询时MySQL会评估,走索引快,还是全表扫描快,如果全表扫描更快,则放弃索引走全表扫描。 因此,is null 、is not null是否走索引,得具体情况具体分析,并不是固定的。
执行SQL : explain select * from tb_user where profession = '软件工程';
查询走了联合索引。
执行SQL,创建profession的单列索引:create index idx_user_pro ontb_user(profession);
创建单列索引后,再次查看上述SQL语句的执行计划,看看到底走哪个索引。
测试结果,我们可以看到,possible_keys中 idx_user_pro_age_sta,idx_user_pro 这两个索引都可能用到,最终MySQL选择了idx_user_pro_age_sta索引。这是MySQL自动选择的结果。
那么,我们能不能在查询的时候,自己来指定使用哪个索引呢? 答案是肯定的,此时就可以借助于MySQL的SQL提示来完成。
SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
SQL提示主要由以下几种方式:
use index:建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估)。
explain select * from tb_user use index(idx_user_pro) where profession = '软件工程';
ignore index:排除指定的索引,即不使用该索引
explain select * from tb_user ignore index(idx_user_pro) where profession = '软件工程';
force index:强制使用指定索引
explain select * from tb_user force index(idx_user_pro) where profession = '软件工程';
覆盖索引是指查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到。 我们要尽量使用覆盖索引,减少select *。
接下来,我们来看一组SQL的执行计划,看看执行计划的差别,然后再来具体做一个解析。
explain select id, profession from tb_user where profession = '软件工程' and age = 31 and status = '0' ;
explain select id,profession,age, status from tb_user where profession = '软件工程' and age = 31 and status = '0' ;
explain select id,profession,age, status, name from tb_user where profession = '软 件工程' and age = 31 and status = '0' ;
explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
上述这几条SQL的执行计划为:
从上述的执行计划我们可以看到,这四条SQL语句的执行计划前面所有的指标都是一样的,看不出来差异。但是此时,我们主要关注的是后面的Extra,前面两条SQL的结果为 Using where; Using Index ; 而后面两条SQL的结果为: Using index condition 。
Extra(注意:不同版本的mysql的Extra信息可能会不同) | 含义 |
---|---|
Using where; Using Index | 查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询数据 |
Using index condition | 查找使用了索引,但是需要回表查询数据 |
因为,在tb_user表中有一个联合索引 idx_user_pro_age_sta,该索引关联了三个字段profession、age、status,而这个索引也是一个二级索引,所以叶子节点下面挂的是这一行的主键id。 所以当我们查询返回的数据在 id、profession、age、status 之中,则直接走二级索引直接返回数据了。
如果我们需要返回的字段不在这四个字段之中,就需要拿到主键id,再去扫描聚集索引,再获取别的字段的信息,这个过程就是回表。 而我们如果一直使用select * 查询返回所有字段值,很容易就会造成回表查询(除非是根据主键查询,此时只会扫描聚集索引)。
为了大家更清楚的理解,什么是覆盖索引,什么是回表查询,我们一起再来看下面的这组SQL的执行过程:
id是主键,是一个聚集索引。 name字段建立了普通索引,是一个二级索引(辅助索引)。
执行SQL : select * from tb_user where id = 2;
根据id查询,直接走聚集索引查询,一次索引扫描,直接返回数据,性能高。
执行SQL:select id,name from tb_user where name = 'Arm';
虽然是根据name字段查询,查询二级索引,但是由于查询返回在字段为 id,name,在name的二级索引中,这两个值都是可以直接获取到的,因为覆盖索引,所以不需要回表查询,性能高。
执行SQL:selet id,name,gender from tb_user where name = 'Arm';
由于在name的二级索引中,不包含gender,所以,需要两次索引扫描,也就是需要回表查询,性能相对较差一点。
思考题:
一张表, 有四个字段(id, username, password, status), 由于数据量大, 需要对以下SQL语句进行优化, 该如何进行才是最优方案:
select id,username,password from tb_user where username = ‘itcast’;
答案:
针对于 username, password建立联合索引, sql为: create index idx_user_name_pass on tb_user(username,password);
这样可以避免上述的SQL语句,在查询的过程中,出现回表查询。
当字段类型为字符串(varchar,text,longtext等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO, 影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
设置前缀索引的语法如下:
create index idx_xxxx on table_name(column(n)) ;
示例: 为tb_user表的email字段,建立长度为5的前缀索引。
create index idx_email_5 on tb_user(email(5));
我们在设置前缀索引时,应该如何确定前缀长度呢?
可以根据索引的选择性来决定,选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高, 唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
-- 查看不重复的email数据数量与数据总数量的比值
select count(distinct email) / count(*) from tb_user ;
-- 截取email前五个字符,比较前五个字符不重复的email的数据数量与数据总数量的比值
select count(distinct substring(email,1,5)) / count(*) from tb_user ;
前缀索引的查询流程如下:
单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。
我们先来看看 tb_user 表中目前的索引情况:
在查询出来的索引中,既有单列索引,又有联合索引。
接下来,我们来执行一条SQL语句,看看其执行计划:
通过上述执行计划我们可以看出来,在and连接的两个字段 phone、name上都是有单列索引的,但是最终mysql只会选择一个索引,也就是说,只能走一个字段的索引,此时是会回表查询的。
紧接着,我们再来创建一个phone和name字段的联合索引来查询一下执行计划。
create unique index idx_user_phone_name on tb_user(phone,name);
此时,查询时,就走了联合索引,而在联合索引中包含 phone、name的信息,在叶子节点下挂的是对应的主键id,所以查询是无需回表查询的。
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。
如果查询使用的是联合索引,具体的结构示意图如下: