接上篇学习笔记GAT学习:PyG实现GAT(图注意力神经网络)网络(一)为了使得Attention的效果更好,所以加入multi-head attention。画个图说明multi-head attention的工作原理。
其实就相当于并联了head_num个attention后,将每个attention层的输出特征拼接起来,然后再输入一个attenion层得到输出结果。
关于GAT的原理等知识,参考我的上篇博客:PyG实现GAT(图注意力神经网络)网络(一)
import torch
import math
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops,degree
from torch_geometric.datasets import Planetoid
import ssl
import torch.nn.functional as F
class GAL(MessagePassing):
def __init__(self,in_features,out_featrues):
super(GAL,self).__init__(aggr='add')
self.a = torch.nn.Parameter(torch.zeros(size=(2*out_featrues, 1)))
torch.nn.init.xavier_uniform_(self.a.data, gain=1.414) # 初始化
# 定义leakyrelu激活函数
self.leakyrelu = torch.nn.LeakyReLU()
self.linear=torch.nn.Linear(in_features,out_featrues)
def forward(self,x,edge_index):
x=self.linear(x)
N=x.size()[0]
row,col=edge_index
a_input = torch.cat([x[row], x[col]], dim=1)
# [N, N, 1] => [N, N] 图注意力的相关系数(未归一化)
temp=torch.mm(a_input,self.a).squeeze()
e = self.leakyrelu(temp)
#e_all为同一个节点与其全部邻居的计算的分数的和,用于计算归一化softmax
e_all=torch.zeros(x.size()[0])
count = 0
for i in col:
e_all[i]+=e[count]
count=count+1
for i in range(len(e)):
e[i]=math.exp(e[i])/math.exp(e_all[col[i]])
return self.propagate(edge_index,x=x,norm=e)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j
class GAT(torch.nn.Module):
def __init__(self, in_features, hid_features, out_features, n_heads):
"""
n_heads 表示有几个GAL层,最后进行拼接在一起,类似self-attention
从不同的子空间进行抽取特征。
"""
super(GAT, self).__init__()
# 定义multi-head的图注意力层
self.attentions = [GAL(in_features, hid_features) for _ in
range(n_heads)]
# 输出层,也通过图注意力层来实现,可实现分类、预测等功能
self.out_att = GAL(hid_features * n_heads, out_features)
def forward(self, x, edge_index):
# 将每个head得到的x特征进行拼接
x = torch.cat([att(x, edge_index) for att in self.attentions], dim=1)
print('x.size after cat',x.size())
x = F.elu(self.out_att(x,edge_index)) # 输出并激活
print('x.size after elu',x.size())
return F.log_softmax(x, dim=1) # log_softmax速度变快,保持数值稳定
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.gat = GAT(dataset.num_node_features,16,7,4)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.dropout(x, training=self.training)
x = self.gat(x, edge_index)
print('X_GAT',x.size())
return F.log_softmax(x, dim=1)
ssl._create_default_https_context = ssl._create_unverified_context
dataset = Planetoid(root='Cora', name='Cora')
x=dataset[0].x
edge_index=dataset[0].edge_index
model=Net()
data=dataset[0]
out=Net()(data)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
for epoch in range(2):
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct/int(data.test_mask.sum())
print('Accuracy:{:.4f}'.format(acc))
>>>Accuracy:0.1930
class GAT(torch.nn.Module):
def __init__(self, in_features, hid_features, out_features, n_heads):
"""
n_heads 表示有几个GAL层,最后进行拼接在一起,类似self-attention
从不同的子空间进行抽取特征。
"""
super(GAT, self).__init__()
# 定义multi-head的图注意力层
self.attentions = [GAL(in_features, hid_features) for _ in
range(n_heads)]
# 输出层,也通过图注意力层来实现,可实现分类、预测等功能
self.out_att = GAL(hid_features * n_heads, out_features)
def forward(self, x, edge_index):
# 将每个head得到的x特征进行拼接
x = torch.cat([att(x, edge_index) for att in self.attentions], dim=1)
print('x.size after cat',x.size())
x = F.elu(self.out_att(x,edge_index)) # 输出并激活
print('x.size after elu',x.size())
return F.log_softmax(x, dim=1) # log_softmax速度变快,保持数值稳定
>>>x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])