手把手教你使用Python进行数据分析和可视化

Python是进行数据分析的一种很不错的语言,主要是因为以数据为中心的库非常适合。 Pandas是其中的一种,使导入和分析数据更加容易。 在本文中,我使用了来分析斯坦福网站的公共数据集中的Country Data.csv文件中的数据。

安装
安装Pandas:

pip install pandas

在Pandas中创建DataFrame通过使用pd.Series方法将多个Series传递到DataFrame类中来完成数据帧的创建。 在这里,它在两个Series对象中传递,s1作为第一行,s2作为第二行。

例子:

输出:

 

 

 

用Pandas导入数据

第一步是读取数据。数据存储为逗号分隔值或csv文件,其中每行用换行分隔,每列用逗号(,)分隔。为了能够使用Python中的数据,需要将csv文件读取到Pandas DataFrame中。DataFrame是表示和处理表格数据的一种方式。

例子:

import pandas as pd 

df = pd.read_csv("IND_data.csv") 

df.head() 

df.shape 

输出:

 

手把手教你使用Python进行数据分析和可视化_第1张图片

29,10

用Pandas索引DataFrames

可以使用pandas.DataFrame.iloc方法建立索引。iloc方法允许按位置检索多达行和列。

例子:

df.iloc[0:5,:] 
df.iloc[:,:] 
df.iloc[5:,:5] 

很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:721195303


在Pandas中使用标签建立索引

可以使用pandas.DataFrame.loc方法对标签进行索引,该方法允许使用标签而不是位置进行索引。
例子:

df.loc[0:5,:] 
df = df.loc[5:,:] 

上面的内容实际上与df.iloc [0:5 ,:]并没有太大区别。这是因为尽管行标签可以采用任何值,但我们的行标签与位置完全匹配。但是,列标签可以使处理数据时变得更加容易。例子:

df.loc[:5,"Time period"] 

 

手把手教你使用Python进行数据分析和可视化_第2张图片

DataFrame Math与Pandas

数据帧的计算可以通过使用pandas工具的统计功能来完成。
例子:

df.describe() 
df.corr() 
df.rank() 

 

手把手教你使用Python进行数据分析和可视化_第3张图片

 

 

Pandas图

这些示例中的图是使用用于引用matplotlib API的标准约定制作的,该API提供了Pandas的基础知识,可轻松创建美观地图。
例子:

import the required module 
import matplotlib.pyplot as plt 
df['Observation Value'].hist(bins=10) 

df.boxplot(column='Observation Value', by = 'Time period') 

x = df["Observation Value"] 
y = df["Time period"] 
plt.scatter(x, y, label= "stars", color= "m", 
			marker= "*", s=30) 
plt.xlabel('Observation Value') 
plt.ylabel('Time period') 
plt.show() 

 

手把手教你使用Python进行数据分析和可视化_第4张图片

 

手把手教你使用Python进行数据分析和可视化_第5张图片

 

手把手教你使用Python进行数据分析和可视化_第6张图片

在这里还是要推荐下我自己建的Python学习群:721195303,群里都是学Python的,如果你想学或者正在学习Python ,欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python软件开发相关的),包括我自己整理的一份2021最新的Python进阶资料和零基础教学,欢迎进阶中和对Python感兴趣的小伙伴加入!

 

你可能感兴趣的:(python,数据分析,大数据,可视化,数据可视化)