三种方法实现数据离散化-python实现

三种方法实现数据离散化-python实现_第1张图片
在这里插入图片描述

#-*- coding: utf-8 -*-
#数据规范化
import pandas as pd

datafile = '../data/discretization_data.xls' #参数初始化
data = pd.read_excel(datafile) #读取数据
data = data[u'肝气郁结证型系数'].copy()
k = 4

d1 = pd.cut(data, k, labels = range(k)) 
#等宽离散化,各个类比可以命名为0,1,2,3

#等频率离散化
w = [1.0*i/k for i in range(k+1)]
w = data.describe(percentiles = w)[4:4+k+1] #使用describe函数自动计算分位数
w[0] = w[0]*(1-1e-10)#构造闭区间
d2 = pd.cut(data, w, labels = range(k))

from sklearn.cluster import KMeans #引入KMeans
kmodel = KMeans(n_clusters = k, n_jobs = 4) #建立模型,n_jobs是并行数,一般等于CPU数较好
kmodel.fit(data.reshape((len(data), 1))) #训练模型
c = pd.DataFrame(kmodel.cluster_centers_).sort(0) #输出聚类中心,并且排序(默认是随机序的)

#rolling_mean表示移动平均,即用当前值和前2个数值取平均数,相当于相邻两项求中点
#由于通过移动平均,会使得第一个数变为空值,因此需要使用.iloc[1:]过滤掉空值
w = pd.rolling_mean(c, 2).iloc[1:] #相邻两项求中点,作为边界点,但缺少首末边界点
w = [0] + list(w[0]) + [data.max()] #把首末边界点加上
d3 = pd.cut(data, w, labels = range(k))

def cluster_plot(d, k): #自定义作图函数来显示聚类结果
  import matplotlib.pyplot as plt
  plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
  plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
  
  plt.figure(figsize = (8, 3))
  for j in range(0, k):
    plt.plot(data[d==j], [j for i in d[d==j]], 'o')
  
  plt.ylim(-0.5, k-0.5)
  return plt

cluster_plot(d1, k).show()

cluster_plot(d2, k).show()
cluster_plot(d3, k).show()

参考了数据离散化 - 等宽&等频&聚类离散 - Python代码

你可能感兴趣的:(数据分析基础)