- 推荐算法学习记录2.2——kaggle数据集的动漫电影数据集推荐算法实践——基于内容的推荐算法、协同过滤推荐
萱仔学习自我记录
推荐算法学习pythonmatplotlib开发语言
1、基于内容的推荐:这种方法根据项的相关信息(如描述信息、标签等)和用户对项的操作行为(如评论、收藏、点赞等)来构建推荐算法模型。它可以直接利用物品的内容特征进行推荐,适用于内容较为丰富的场景。#1.基于内容的推荐算法fromsklearn.feature_extraction.textimportTfidfVectorizerfromsklearn.metrics.pairwiseimport
- 免费GPU平台教程,助力你的AI, pytorch tensorflow 支持cuda
zhangfeng1133
人工智能pytorchtensorflow
Colab:https://drive.google.com/drive/home阿里天池实验室:https://tianchi.aliyun.com/60个小时gputianchi.aliyun.com/notebook-ai/天池实验室_实时在线的数据分析协作工具,享受免费计算资源-阿里云天池移动九天:https://jiutian.10086.cn/edu/#/homekagglekaggl
- 49Kaggle 数据分析项目入门实战--绝地求生游戏最终排名预测
Jachin111
绝地求生介绍相信很多都玩过绝地求生这款游戏,其游戏规则主要是将100名玩家空手被扔到一个岛上,这些玩家必须探索、寻找、消灭其他玩家,直到只剩下一个玩家活着。绝地求生很受欢迎。这款游戏销量目前超过5000万份,是有史以来销量排名前五的游戏,每月有数百万活跃玩家。而我们本次实验的任务就是根据玩家在游戏中的种种表现来预测出其在最终的排名。导入数据并预览首先安装实验需要的statsmodels包。!pip
- 李沐《动手学深度学习》课程笔记:15 实战:Kaggle房价预测 + 课程竞赛:加州2020年房价预测
非文的NLP修炼笔记
#李沐《动手学深度学习》课程笔记深度学习人工智能
15实战:Kaggle房价预测+课程竞赛:加州2020年房价预测1.访问和读取数据集importhashlibimportosimporttarfileimportzipfileimportrequestsDATA_HUB=dict()DATA_URL='http://d2l_data.s3-accelerate.amazonaws.com/'defdownload(name,cache_dir=
- Kaggle Intermediate ML Part Two
卢延吉
NewDeveloper数据(Data)ML&ME&GPTDataML
CategoricalVariablesCategoricalvariables,alsoknownasqualitativevariables,areafundamentalconceptinstatisticsanddataanalysis.Here'sabreakdowntohelpyouunderstandthem:Whatarethey?Categoricalvariablesrepre
- 【工业智能】VSB Power Line Fault Detection-chapter1
凭轩听雨199407
学习python制造数据挖掘
VSBPowerLineFaultDetection-chapter1backgrounddataset数据介绍信号处理方法EDAtrainfeatureengineeringmodeltraintry信息来源:KaggleCompetition:VSBPowerLineFaultDetectionbackground中压高架线路绵延上百公里来为城市提供电力。因为距离很远,所以人工检测那些没有立即
- 【工业智能】VSB Power Line Fault Detection-chapter2
凭轩听雨199407
数据挖掘
工业智能】VSBPowerLineFaultDetection-chapter2关键信息依赖版本信息名词术语tricks信息来源:KaggleCompetition:VSBPowerLineFaultDetection分析冠军代码。源文件URL:https://www.kaggle.com/code/mark4h/vsb-1st-place-solution关键信息LGB标准5折验证9个特征所有特
- 机器学习网格搜索超参数优化实战(随机森林) ##4
恒c
机器学习随机森林人工智能
文章目录基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理模块时序特征衍生第一轮网格搜索第二轮搜索第三轮搜索第四轮搜索第五轮搜索基于Kaggle电信用户流失案例数据(可在官网进行下载)导入库#基础数据科学运算库importnumpyasnpimportpandasaspd#可视化库importseabornassnsimportmatplotlib.pyplotasplt#时间模块
- 多元统计分析课程论文-聚类效果评价
talle2021
数据分析机器学习聚类数据挖掘机器学习
数据集来源:UnsupervisedLearningonCountryData(kaggle.com)代码参考:Clustering:PCA|K-Means-DBSCAN-Hierarchical||Kaggle基于特征合成降维和主成分分析法降维的国家数据集聚类效果评价目录1.特征合成降维2.PCA降维3.K-Means聚类3.1对特征合成降维的数据聚类分析3.2对PCA降维的数据聚类分析摘要:本
- R语言课程论文-飞机失事数据可视化分析
talle2021
数据分析r语言数据分析数据可视化
数据来源:AirplaneCrashesSince1908(kaggle.com)代码参考:ExploringhistoricAirPlanecrashdata|Kaggle数据指标及其含义指标名含义Date事故发生日期(年-月-日)Time当地时间,24小时制,格式为hh:mmLocation事故发生的地点Operator航空公司或飞机的运营商Flight由飞机操作员指定的航班号Route事故前
- Dataframe型数据分析技巧汇总
我叫杨傲天
学习笔记机器学习数据分析数据挖掘
Kaggle如何针对少量数据集比赛的打法。数据降维的几种方法HF.075|时间序列趋势性分析方法汇总机器学习必须了解的7种交叉验证方法(附代码)这个图!Python也能一键绘制了,而且样式更多..散点图,把散点图画出花来综述:机器学习中的模型评价、模型选择与算法选择!表格任务中的深度学习模型性能比较再见Onehot!KaggleMaster的上分神操作!特征重要性评估方法之排列重要性
- Task 11 XGBoost 算法分析与案例调参实例
沫2021
1.XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
- 关于商店销售量的数据处理小问题(Python)
不期而遇__
pythonpandas数据分析大数据
通过学校举行的某次学科竞赛,我接触到了kaggle上的一道题:StoreSales-TimeSeriesForecasting。由于题主资质尚浅,本文将对前期数据处理的一些小问题做出解答,不涉及后续更难的问题。此处放原题链接:StoreSales-TimeSeriesForecasting题主也是看了很多的资料,也看到了CSDN上另外一位大佬写的文章,收获颇多,此处也放一下链接:Kaggle实战:
- 学习笔记 2019-04-30
段勇_bf97
HousePrices-bagging_xgboost+lasso+ridgeKaggle入門級賽題:房價預測FFMPEG视音频编解码零基础学习方法35岁程序员的独家面试经历公司名称公司介绍薪水车辆工程专业33岁简历有些传感器方面的东西20k-35k非渣硕是如何获得百度、京东双SP一些面试经验20k-40k吴以均的简历一个大牛的简历北京航空航天大学毕业生的简历厦门大学软件学院毕业生的简历名称介绍H
- 数据分析基础之《pandas(8)—综合案例》
csj50
机器学习数据分析
一、需求1、现在我们有一组从2006年到2016年1000部最流行的电影数据数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data2、问题1想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?3、问题2对于这一组电影数据,如果我们想看Rating、Runtime(Minutes)的分布情况,应该如何呈现数据?4、问题3对于这
- XGBoost算法
小森( ﹡ˆoˆ﹡ )
机器学习算法算法人工智能机器学习
XGBoost在机器学习中被广泛应用于多种场景,特别是在结构化数据的处理上表现出色,XGBoost适用于多种监督学习任务,包括分类、回归和排名问题。在数据挖掘和数据科学竞赛中,XGBoost因其出色的性能而被频繁使用。例如,在Kaggle平台上的许多获奖方案中,XGBoost都发挥了重要作用。此外,它在处理缺失值和大规模数据集上也有很好的表现。XGBoost是一种基于梯度提升决策树(GBDT)的算
- Kaggle Intro Model Validation and Underfitting and Overfitting
卢延吉
NewDeveloper数据(Data)ML&ME&GPT机器学习
ModelValidationModelvalidationisthecornerstoneofensuringarobustandreliablemachinelearningmodel.It'stherigorousassessmentofhowwellyourmodelperformsonunseendata,mimickingreal-worldscenarios.Doneright,it
- kaggle实战语义分割-Car segmentation(附源码)
橘柚jvyou
python人工智能计算机视觉深度学习pytorch
目录前言项目介绍数据集处理数据集加载定义网络训练网络验证网络前言本篇文章会讲解使用pytorch完成另外一个计算机视觉的基本任务-语义分割。语义分割是将图片中每个部分根据其语义分割出来,其相比于图像分类的不同点是,图像分类是对一张图片进行分类,而语义分割是对图像中的每个像素点进行分类。我们这里使用的语义分割数据集是kaggle上的一个数据集。数据集来源:https://www.kaggle.com
- kaggle实战图像分类-Intel Image Classification(附源码)
橘柚jvyou
分类人工智能pytorch计算机视觉深度学习
目录前言数据集加载定义网络训练网络验证网络前言本篇文章会讲解一个使用pytorch这个深度学习框架完成一个kaggle上的图像分类任务。主要会介绍如何加载数据集,导入网络训练数据,保存损失,精度变化曲线和最终模型,以及测试模型在验证集上的好坏。其数据集介绍可以看一下kaggle的网址,这里就不过多介绍。数据集来源:https://www.kaggle.com/datasets/puneet6060
- 机器学习 | 深入集成学习的精髓及实战技巧挑战
亦世凡华、
#机器学习机器学习集成学习人工智能boostingxgboost
目录xgboost算法简介泰坦尼克号乘客生存预测(实操)lightGBM算法简介《绝地求生》玩家排名预测(实操)xgboost算法简介XGBoost全名叫极端梯度提升树,XGBoost是集成学习方法的王牌,在Kaggle数据挖掘比赛中,大部分获胜者用了XGBoost。XGBoost在绝大多数的回归和分类问题上表现的十分顶尖,接下来将较详细的介绍XGBoost的算法原理。最优模型构建方法:构建最优模
- 称霸kaggle的XGBoost究竟是啥?
猴小白
一、前言:kaggle神器XGBoost相信入了机器学习这扇门的小伙伴们一定听过XGBoost这个名字,这个看起来朴实无华的boosting算法近年来可算是炙手可热,别的不说,但是大家所熟知的kaggle比赛来看,说XGBoost是“一统天下”都不为过。业界将其冠名“机器学习竞赛的胜利女神”,当然,相信很多小伙伴也看过很多文章称其为“超级女王”。那么问题来了,为啥是女的?(滑稽~)XGBoost全
- 烹饪第一个U-Net进行图像分割
小北的北
python开发语言
今天我们将学习如何准备计算机视觉中最重要的网络之一:U-Net。如果你没有代码和数据集也没关系,可以分别通过下面两个链接进行访问:代码:https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------Ka
- 北京房价预测——Kaggle数据
GavinHarbus
日暮途远,人间何世将军一去,大树飘零概述之前学习了加州房价预测模型,便摩拳擦掌,从kaggle上找到一份帝都房价数据,练练手。实验流程实验数据从Kaggle中选择了帝都北京住房价格的数据集,该数据集摘录了2011~2017年链家网上的北京房价数据。image下载并预览数据下载并解压数据image预览数据image每一行代表一间房,每个房子有26个相关属性,其中以下几个需要备注:DOM:市场活跃天数
- kaggle:泰坦尼克号获救预测_Titanic_EDA##
卜咦
问题数据来源于Kaggle,通过一组列有泰坦尼克号灾难幸存者或幸存者的训练样本集,我们的模型能否基于不包含幸存者信息的给定测试数据集确定这些测试数据集中的乘客是否幸存。代码与数据分析导入必要的包和titanic数据image数据集基本信息将数据分为不同类别,分别为类别型数据和数字型数据类别数据:Survived,Sex,andEmbarked.Ordinal:Pclass数字型数据:Age,Far
- 基于LLM的数据漂移和异常检测
新缸中之脑
LLM
大型语言模型(LLM)的最新进展被证明是许多领域的颠覆性力量(请参阅:通用人工智能的火花:GPT-4的早期实验)。和许多人一样,我们非常感兴趣地关注这些发展,并探索LLM影响数据科学和机器学习领域的工作流程和常见实践的潜力。在我们之前的文章中,我们展示了LLM使用Kaggle竞赛中的表格数据提供预测的潜力。只需很少的努力(即数据清理和/或功能开发),我们基于LLM的模型就可以在几个竞赛参赛作品中获
- Xgboost
大雄的学习人生
在最近的Kaggle竞赛中,利用Xgboost的队伍经常能问鼎冠军,那么问题来了,Xgboost为什么这么强呢?算法释义Xgboost是一种带有正则化项,并利用损失函数泰勒展开式中二阶导数信息优化求解并增加一些计算优化的梯度提升树。Xgboost的目标函数定义为:其中l为损失函数,Ω(ft(x))是用于惩罚ft(x)模型复杂度的正则化项。根据上述目标函数可以得到Xgboost在每一轮前向分步算法中
- 机器学习数据预处理方法(数据重编码) ##2
恒c
机器学习人工智能数据分析
文章目录@[TOC]基于Kaggle电信用户流失案例数据(可在官网进行下载)一、离散字段的数据重编码1.OrdinalEncoder自然数排序2.OneHotEncoder独热编码3.ColumnTransformer转化流水线二、连续字段的特征变换1.标准化(Standardization)和归一化(Normalization)2.连续变量分箱3.连续变量特征转化的ColumnTransform
- 机器学习逻辑回归模型训练与超参数调优 ##3
恒c
机器学习逻辑回归人工智能
文章目录@[TOC]基于Kaggle电信用户流失案例数据(可在官网进行下载)逻辑回归模型训练逻辑回归的超参数调优基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理部分可见:机器学习数据预处理方法(数据重编码)逻辑回归模型训练fromsklearn.metricsimportaccuracy_score,recall_score,precision_score,f1_score,ro
- 50Kaggle 数据分析项目入门实战--分销商产品未来销售情况预测
Jachin111
分销商产品未来销售情况预测未来销售额预测介绍对于一个产品来说,其未来销售额的预测是一个重要的指标,也是一项重要的任务。例如,对于一部苹果手机来说。在上市之前,得先对销售额进行预测,才能确定出货量的大小。本次实验来源于Kaggle上的一个挑战,即:未来销售额预测,由俄罗斯的1C-Company软件分销公司发起,并提供数据。而本次实验的任务就是根据提供的数据,包含商品类别、商品名称、商店等信息和商品的
- 机器学习本科课程 实验1 线性模型
11egativ1ty
机器学习本科课程机器学习人工智能
第三章线性模型3.1一元线性回归3.2多元线性回归3.3对数几率回归,线性判别分析(二选一)3.4类别不均衡3.1一元线性回归——Kaggle房价预测使用Kaggle房价预测数据集:打乱数据顺序,取前70%的数据作为训练集,后30%的数据作为测试集分别以LotArea,BsmtUnfSF,GarageArea三种特征作为模型的输入,SalePrice作为模型的输出在训练集上,使用最小二乘法求解模型
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23