【大数据实战】Docker中Hadoop集群搭建

目录

    • Docker中Hadoop集群搭建
      • 环境
      • 网络设置
      • 安装docker
      • 安装OpenSSH免密登录
      • Ansible安装
      • 软件环境配置
      • 配置hadoop运行所需配置文件
      • Hadoop 启动
      • 问题

Docker中Hadoop集群搭建

环境

1、操作系统: CentOS 7 64位

网络设置

hostname IP
cluster-master 172.20.0.2
cluster-slave1 172.20.0.3
cluster-slave2 172.20.0.4
cluster-slave3 172.20.0.5

安装docker

安装后拉去Centos镜像

$ docker pull  daocloud.io/library/centos:7

按照集群的架构,创建容器时需要设置固定IP,所以先要在docker使用如下命令创建固定IP的子网

$ docker network create --subnet=172.20.0.0/16 netgroup

docker的子网创建完成之后就可以创建固定IP的容器了

#cluster-master
#-p 设置docker映射到容器的端口 后续查看web管理页面使用
docker run -d --privileged -ti --name cluster-master -h cluster-master -p 18088:18088 -p 9870:9870 --net netgroup --ip 172.20.0.2 daocloud.io/library/centos:7 /usr/sbin/init

#cluster-slaves
docker run -d --privileged -ti  --name cluster-slave1 -h cluster-slave1 --net netgroup --ip 172.20.0.3 daocloud.io/library/centos:7 /usr/sbin/init

docker run -d --privileged -ti  --name cluster-slave2 -h cluster-slave2 --net netgroup --ip 172.20.0.4 daocloud.io/library/centos:7 /usr/sbin/init

docker run -d --privileged -ti --name cluster-slave3 -h cluster-slave3 --net netgroup --ip 172.20.0.5 daocloud.io/library/centos:7 /usr/sbin/init

启动控制台并进入docker容器中:

docker exec -it cluster-master /bin/bash

安装OpenSSH免密登录

1、cluster-master安装:

#cluster-master需要修改配置文件(特殊)
#cluster-master

#安装openssh
$ yum -y install openssh openssh-server openssh-clients

$ systemctl start sshd
####ssh自动接受新的公钥
####master设置ssh登录自动添加kown_hosts
$ vi /etc/ssh/ssh_config
#将原来的StrictHostKeyChecking ask
#设置StrictHostKeyChecking为no
#保存
$  systemctl restart sshd

2、分别对slaves安装OpenSSH

#安装openssh
$ yum -y install openssh openssh-server openssh-clients

$ systemctl start sshd

3、cluster-master公钥分发

在master机上执行ssh-keygen -t rsa并一路回车,完成之后会生成~/.ssh目录,目录下有id_rsa(私钥文件)和id_rsa.pub(公钥文件),再将id_rsa.pub重定向到文件authorized_keys

$ ssh-keygen -t rsa
#一路回车

$ cat ~/.ssh/id_rsa.pub > ~/.ssh/authorized_keys

需要先设置slave服务器密码

$ passwd
root

文件生成之后用scp将公钥文件分发到集群slave主机

$ ssh root@cluster-slave1 'mkdir ~/.ssh'
$ scp ~/.ssh/authorized_keys root@cluster-slave1:~/.ssh
$ ssh root@cluster-slave2 'mkdir ~/.ssh'
$ scp ~/.ssh/authorized_keys root@cluster-slave2:~/.ssh
$ ssh root@cluster-slave3 'mkdir ~/.ssh'
$ scp ~/.ssh/authorized_keys root@cluster-slave3:~/.ssh

分发完成之后测试是否已经可以免输入密码登录

[root@cluster-master /]# ssh root@cluster-slave1
[root@cluster-slave1 ~]# exit
logout

Ansible安装

[root@cluster-master /]# yum -y install epel-release
[root@cluster-master /]# yum -y install ansible
#这样的话ansible会被安装到/etc/ansible目录下

此时我们再去编辑ansible的hosts文件

$ vi /etc/ansible/hosts
[cluster]
cluster-master
cluster-slave1
cluster-slave2
cluster-slave3

[master]
cluster-master

[slaves]
cluster-slave1
cluster-slave2
cluster-slave3
  • 配置docker容器hosts

由于/etc/hosts文件在容器启动时被重写,直接修改内容在容器重启后不能保留,为了让容器在重启之后获取集群hosts,使用了一种启动容器后重写hosts的方法。
需要在~/.bashrc中追加以下指令

$ vi ~/.bashrc
:>/etc/hosts
cat >>/etc/hosts<<EOF
127.0.0.1   localhost
172.20.0.2  cluster-master
172.20.0.3  cluster-slave1
172.20.0.4  cluster-slave2
172.20.0.5  cluster-slave3
EOF
$ source ~/.bashrc

使配置文件生效,可以看到/etc/hosts文件已经被改为需要的内容

[root@cluster-master ansible]# cat /etc/hosts
127.0.0.1   localhost
172.20.0.2  cluster-master
172.20.0.3  cluster-slave1
172.20.0.4  cluster-slave2
172.20.0.5  cluster-slave3
  • 用ansible分发.bashrc至集群slave下
ansible cluster -m copy -a "src=~/.bashrc dest=~/"

软件环境配置

下载JDK1.8并解压缩至/opt 目录下

$ docker cp jdk-8u211-linux-x64.tar.gz  cluster-master:/opt/
$ tar -zxvf jdk-8u211-linux-x64.tar.gz

下载hadoop3 到/opt目录下,解压安装包,并创建链接文件

$ wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.2/hadoop-3.3.2.tar.gz --no-check-certificate

$ tar -xzvf hadoop-3.3.2.tar.gz
$ ln -s hadoop-3.3.2 hadoop
  • 配置java和hadoop环境变量

编辑 ~/.bashrc文件

# hadoop
export HADOOP_HOME=/opt/hadoop-3.3.2
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

#java
export JAVA_HOME=/opt/jdk8
export PATH=$JAVA_HOME/bin:$PATH

使文件生效:

$ source ~/.bashrc

配置hadoop运行所需配置文件

cd $HADOOP_HOME/etc/hadoop/

1、修改core-site.xml

<configuration>
    <property>
        <name>hadoop.tmp.dirname>
        <value>/home/hadoop/tmpvalue>
        <description>A base for other temporary directories.description>
    property>
    
    <property>
        <name>fs.default.namename>
        <value>hdfs://cluster-master:9000value>
    property>
    <property>
    <name>fs.trash.intervalname>
        <value>4320value>
    property>
configuration>

2、修改hdfs-site.xml

<configuration>
<property>
   <name>dfs.namenode.name.dirname>
   <value>/home/hadoop/tmp/dfs/namevalue>
 property>
 <property>
   <name>dfs.datanode.data.dirname>
   <value>/home/hadoop/datavalue>
 property>
 <property>
   <name>dfs.replicationname>
   <value>3value>
 property>
 <property>
   <name>dfs.webhdfs.enabledname>
   <value>truevalue>
 property>
 <property>
   <name>dfs.permissions.superusergroupname>
   <value>staffvalue>
 property>
 <property>
   <name>dfs.permissions.enabledname>
   <value>falsevalue>
 property>
 configuration>

3、修改mapred-site.xml

<configuration>
<property>
  <name>mapreduce.framework.namename>
  <value>yarnvalue>
property>
<property>
    <name>mapred.job.trackername>
    <value>cluster-master:9001value>
property>
<property>
  <name>mapreduce.jobtracker.http.addressname>
  <value>cluster-master:50030value>
property>
<property>
  <name>mapreduce.jobhisotry.addressname>
  <value>cluster-master:10020value>
property>
<property>
  <name>mapreduce.jobhistory.webapp.addressname>
  <value>cluster-master:19888value>
property>
<property>
  <name>mapreduce.jobhistory.done-dirname>
  <value>/jobhistory/donevalue>
property>
<property>
  <name>mapreduce.intermediate-done-dirname>
  <value>/jobhisotry/done_intermediatevalue>
property>
<property>
  <name>mapreduce.job.ubertask.enablename>
  <value>truevalue>
property>
configuration>

4、yarn-site.xml

<configuration>
    <property>
   <name>yarn.resourcemanager.hostnamename>
   <value>cluster-mastervalue>
 property>
 <property>
   <name>yarn.nodemanager.aux-servicesname>
   <value>mapreduce_shufflevalue>
 property>
 <property>
   <name>yarn.nodemanager.aux-services.mapreduce.shuffle.classname>
   <value>org.apache.hadoop.mapred.ShuffleHandlervalue>
 property>
 <property>
   <name>yarn.resourcemanager.addressname>
   <value>cluster-master:18040value>
 property>
<property>
   <name>yarn.resourcemanager.scheduler.addressname>
   <value>cluster-master:18030value>
 property>
 <property>
   <name>yarn.resourcemanager.resource-tracker.addressname>
   <value>cluster-master:18025value>
 property> <property>
   <name>yarn.resourcemanager.admin.addressname>
   <value>cluster-master:18141value>
 property>
<property>
   <name>yarn.resourcemanager.webapp.addressname>
   <value>cluster-master:18088value>
 property>
<property>
   <name>yarn.log-aggregation-enablename>
   <value>truevalue>
 property>
<property>
   <name>yarn.log-aggregation.retain-secondsname>
   <value>86400value>
 property>
<property>
   <name>yarn.log-aggregation.retain-check-interval-secondsname>
   <value>86400value>
 property>
<property>
   <name>yarn.nodemanager.remote-app-log-dirname>
   <value>/tmp/logsvalue>
 property>
<property>
   <name>yarn.nodemanager.remote-app-log-dir-suffixname>
   <value>logsvalue>
 property>
configuration>
  • 打包hadoop 向slaves分发
$ cd /opt
$ tar -cvf hadoop-dis.tar hadoop hadoop-3.3.2
  • 使用ansible-playbook分发.bashrc和hadoop-dis.tar至slave主机
---
- hosts: cluster
  tasks:
    - name: copy .bashrc to slaves
      copy: src=~/.bashrc dest=~/
      notify:
        - exec source
    - name: copy hadoop-dis.tar to slaves
      unarchive: src=/opt/hadoop-dis.tar dest=/opt

  handlers:
    - name: exec source
      shell: source ~/.bashrc

将以上yaml保存为hadoop-dis.yaml,并执行

ansible-playbook hadoop-dis.yaml

hadoop-dis.tar会自动解压到slave主机的/opt目录下

  • 主节点修改环境变量
$ vi /opt/hadoop-3.3.2/etc/hadoop/hadoop-env.sh 
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

Hadoop 启动

  • 主节点格式化namenode(第一次运行执行)
$ hdfs --daemon namenode -format

如果看到storage format success等字样,即可格式化成功

  • 从节点初始化(第一次运行执行)
$ hdfs --daemon start datanode
  • 启动集群
$ start-all.sh

启动后可使用jps命令查看是否启动成功

#主节点
9697 NodeManager
8947 NameNode
9076 DataNode
9573 ResourceManager
9318 SecondaryNameNode
10041 Jps
#从节点
944 DataNode
1020 Jps
  • 验证服务
守护进程 网页界面 笔记
名称节点 http://nn_host:port/ 默认 HTTP 端口为 9870。
资源管理器 http://rm_host:port/ 默认 HTTP 端口为 18088。
MapReduce JobHistory 服务器 http://jhs_host:port/ 默认 HTTP 端口为 19888。

关闭服务

停止集群
$ stop-all.sh

问题

问题1:ERROR: but there is no HDFS_DATANODE_USER defined. Aborting operation

$ vi /opt/hadoop-3.3.2/etc/hadoop/hadoop-env.sh 
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

**问题2:**启动hadoop 集群是,发现slave节点的datanode没有启动

查了资料发现是因为我在启动集群前,执行了这个命令:

hadoop namenode -format

这个指令会重新格式化namenode的信息,这样可能会导致master节点的VERSION信息跟datanode的信息对不上,导致指令无法同步。

第一步:停止集群:
> stop-all.sh

第二步:删除logs文件夹和tmp文件夹
> rm -rf /opt/hadoop-3.3.2/logs
> rm -rf /tmp/logs

第三步:查看VERSION文件是否存在,如果存在的话,把它删除:
> cd /home/hadoop/tmp/dfs/name/current
> cat VERSION
如果有VERSION文件,直接删除:
> rm -f VERSION

第四步:所有slave节点删除VERSION文件
> cd /home/hadoop/data/current
> cat VERSION
> rm -f VERSION

你可能感兴趣的:(大数据,hadoop,大数据)