基于神经网络的系统辨识,神经网络与图像识别

系统辨识的方法

经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。

其中最小二乘法(LS)是一种经典的和最基本的,也是应用最广泛的方法。

但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GI S)、辅助变量法(IV)、增广最小二乘法(EI,S)和广义最小二乘法(GI S),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR—I S)和随机逼近算法等。

经典的系统辨识方法还存在着一定的不足: (1)利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常无法保证;(2)极大似然法计算耗费大,可能得到的是损失函数的局部极小值;(3)经典的辨识方法对于某些复杂系统在一些情况下无能为力。

随着系统的复杂化和对模型精确度要求的提高,系统辨识方法在不断发展,特别是非线性系统辨识方法。

主要有:1、集员系统辨识法在1979年集员辨识首先出现于Fogel 撰写的文献中,1982年Fogel和Huang又对其做了进一步的改进。

集员辨识是假设在噪声或噪声功率未知但有界UBB(Unknown But Bounded)的情况下,利用数据提供的信息给参数或传递函数确定一个总是包含真参数或传递函数的成员集(例如椭球体、多面体、平行六边体等)。

不同的实际应用对象,集员成员集的定义也不同。集员辨识理论已广泛应用到多传感器信息融合处理、软测量技术、通讯、信号处理、鲁棒控制及故障检测等方面。

2、多层递阶系统辨识法多层递阶方法的主要思想为:以时变参数模型的辨识方法作为基础,在输入输出等价的意义下,把一大类非线性模型化为多层线性模型,为非线性系统的建模给出了一个十分有效的途径。

3、神经网络系统辨识法由于人工神经网络具有良好的非线性映射能力、自学习适应能力和并行信息处理能力,为解决未知不确定非线性系统的辨识问题提供了一条新的思路。

与传统的基于算法的辨识方法相比较,人工神经网络用于系统辨识具有以下优点:(1)不要求建立实际系统的辨识格式,可以省去对系统建模这一步骤;(2)可以对本质非线性系统进行辨识;(3)辨识的收敛速度仅与神经网络的本身及所采用的学习算法有关;(4)通过调节神经元之间的连接权即可使网络的输出来逼近系统的输出;(5)神经网络也是系统的一个物理实现,可以用在在线控制。

4、模糊逻辑系统辨识法模糊逻辑理论用模糊集合理论,从系统输入和输出的量测值来辨识系统的模糊模型,也是系统辨识的一个新的和有效的方法,在非线性系统辨识领域中有十分广泛的应用。

模糊逻辑辨识具有独特的优越性:能够有效地辨识复杂和病态结构的系统;能够有效地辨识具有大时延、时变、多输入单输出的非线性复杂系统;可以辨识性能优越的人类控制器;可以得到被控对象的定性与定量相结合的模型。

模糊逻辑建模方法的主要内容可分为两个层次:一是模型结构的辨识,另一个是模型参数的估计。典型的模糊结构辨识方法有:模糊网格法、自适应模糊网格法、模糊聚类法及模糊搜索树法等。

5、小波网络系统辨识法小波网络是在小波分解的基础上提出的一种前馈神经网络口 ,使用小波网络进行动态系统辨识,成为神经网络辨识的一种新的方法。

小波分析在理论上保证了小波网络在非线性函数逼近中所具有的快速性、准确性和全局收敛性等优点。

小波理论在系统辨识中,尤其在非线性系统辨识中的应用潜力越来越大,为不确定的复杂的非线性系统辨识提供了一种新的有效途径,其具有良好的应用前景。

谷歌人工智能写作项目:神经网络伪原创

MATLAB编程实现,BP神经网络用于系统辨识的问题?

只知道输入输出的数据,不知道系统传递函数,怎么用PID神经网络进行系统辨识得到系统传递函数,请高手帮忙

求传递函数跟用不用神经网络或PID没关系,输入输出的互功率谱 / 输入的自功率谱=传递函数,输入输出的互功率谱由输入输出的互相关经FFT得到,同样输入的自功率谱由输入的自相关经FFT得到。

纯数学推导,C的源代码也有一大堆,也许百度一下就能找到。不过,买本数字信号处理方面的书看看更好。

人工神经网络可以解决哪些问题

信息领域中的应用:信息处理、模式识别、数据压缩等。自动化领域:系统辨识、神经控制器、智能检测等。工程领域:汽车工程、军事工程、化学工程、水利工程等。

在医学中的应用:生物信号的检测与分析、生物活性研究、医学专家系统等。经济领域的应用:市场价格预测、风险评估等。此外还有很多应用,比如交通领域的应用,心理学领域的应用等等。神经网络的应用领域是非常广的。

人工智能专业好学吗?智能制造专业学什么?前景怎么样?

首先,现在的人工智能专业是热门专业。随着人工智能领域的快速发展,对人工智能专业人才的需求相对较大,因此目前选择人工智能专业将会有广阔的就业前景。

随着产业互联网和产业结构升级的共同推进,未来人工智能领域将聚集大量的产业资源和社会资源,人工智能相关岗位的岗位附加值将会相对较高,这在近年来的研究生就业中有明显体现。

随着目前大型互联网(技术)公司开始部署人工智能,未来对人工智能专业人才的需求仍有很大的增长空间。人工智能是一门非常典型的交叉学科,涉及哲学、数学、计算机科学、控制科学、经济学、神经病学和语言学等。

所以它不仅知识量大,而且学习起来也相对困难。所以选择人工智能专业一定要做好充分的准备。

人工智能技术应用后,人工智能领域不仅需要具有创新能力的高端人才,还需要大量具有工业应用能力的技能型人才,对技能型人才的需求往往更大。从这个角度来看,本科甚至专科生学习人工智能,未来的就业前景会更好。

随着产业互联网和产业结构升级的共同推进,人工智能将在未来汇聚大量的产业资源和社会资源,人工智能相关岗位的岗位附加值将会相对较高,这一点在近年来的研究生就业中有明显体现。

随着目前大型互联网(技术)公司开始部署人工智能,未来对人工智能专业人才的需求仍有很大的增长空间。

人工智能技术应用后,人工智能领域不仅需要具有创新能力的高端人才,还需要大量具有工业应用能力的技能型人才,对技能型人才的需求往往更大。从这个角度来看,未来学人工智能的本科生甚至专科生,就业前景会更好。

汽车发动机开环和闭环的区别?

开环控制和闭环控制的区别:一、开环控制:控制器与被控对象间只有顺序作用而无反向联系且控制单方向进行。若组成系统的元件特性和参数值比较稳定,且外界干扰较小,开环控制能 够保持一定的精度。

缺点:精度通常较低、无自动纠偏能力。二、闭环控制:闭环控制系统在输出端和输入端之间存在反馈回路,输出量对控制过程有直接影响。

开环2113控制系统是指汽车发动机只能5261根4102据预先设置的数据对喷油量进1653行控版制,而不能根据实际情况变化权进行油量控制的系统,一般有化油器车、不带三元净化器和养传感器的电喷汽油车及普通柴油车。

闭环控制系统是指汽车发动机通过氧传感器能根据尾气排放中的氧含量数据对喷油量进行控制的系统,有目前市场上大多数销售的电喷汽油车和部分高档电喷柴油车。

较直白的说一般带三元净化器和养传感器的电喷汽油车,都是闭环控制系统电喷车,反之却不一定。

由化油器到开环电喷控制系统至闭环控制系统的设计改进目的是节能与环保,带有三元净化器和养传感器的闭环控制系统电喷车才能达到国际环保验车标准。

目前汽车制造商已停止了开环控制系统车辆的生产,北京、上海等许多城市也已不允许开环控制系统车辆上路,因其燃油的不完全燃烧会造成大气的污染。

从生产成本而论,闭环控制系统车辆造价要比开环控制系统车辆高出5%以上。

人工智能是什么专业?

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。

基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。

根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。

不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。

通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。

知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。

特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。

随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。

机器翻译机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。

基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。

随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。

语义理解语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。

随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。

语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。问答系统问答系统分为开放领域的对话系统和特定领域的问答系统。

问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。

尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。

自然语言处理面临四大挑战:一是在词法、句法、语义、语用和语音等不同层面存在不确定性;二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;三是数据资源的不充分使其难以覆盖复杂的语言现象;四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算四、人机交互人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。

人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。

传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。

人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。

自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。

根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。目前,计算机视觉技术发展迅速,已具备初步的产业规模。

未来计算机视觉技术的发展主要面临以下挑战:一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。

注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。

识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。

从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。

生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。

目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。七、VR/AR虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。

结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。

用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。

虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。

获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。

目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。

总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势。

怎么使用matlab系统辨识工具箱

如果是系统自带的,你可以直接用,如果是外部的或者是自编的你需要先把文件夹拷贝到tools文件夹下,再设置路径。

Matlab常用工具箱介绍(英汉对照)Matlab Main Toolbox——matlab主工具箱Control System Toolbox——控制系统工具箱Communication Toolbox——通讯工具箱Financial Toolbox——财政金融工具箱System Identification Toolbox——系统辨识工具箱Fuzzy Logic Toolbox——模糊逻辑工具箱Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱Image Processing Toolbox——图象处理工具箱LMI Control Toolbox——线性矩阵不等式工具箱Model predictive Control Toolbox——模型预测控制工具箱μ-Analysis and Synthesis Toolbox——μ分析工具箱Neural Network Toolbox——神经网络工具箱Optimization Toolbox——优化工具箱Partial Differential Toolbox——偏微分方程工具箱Robust Control Toolbox——鲁棒控制工具箱Signal Processing Toolbox——信号处理工具箱Spline Toolbox——样条工具箱Statistics Toolbox——统计工具箱Symbolic Math Toolbox——符号数学工具箱Simulink Toolbox——动态仿真工具箱System Identification Toolbox——系统辨识工具箱Wavele Toolbox——小波工具箱例如:控制系统工具箱包含如下功能:连续系统设计和离散系统设计状态空间和传递函数以及模型转换时域响应(脉冲响应、阶跃响应、斜坡响应)频域响应(Bode图、Nyquist图)根轨迹、极点配置较为常见的matlab控制箱有:控制类:控制系统工具箱(control systems toolbox)系统识别工具箱(system identification toolbox)鲁棒控制工具箱(robust control toolbox)神经网络工具箱(neural network toolbox)频域系统识别工具箱(frequency domain system identification toolbox)模型预测控制工具箱(model predictive control toolbox)多变量频率设计工具箱(multivariable frequency design toolbox)信号处理类:信号处理工具箱(signal processing toolbox)滤波器设计工具箱(filter design toolbox)通信工具箱(communication toolbox)小波分析工具箱(wavelet toolbox)高阶谱分析工具箱(higher order spectral analysis toolbox)其它工具箱:统计工具箱(statistics toolbox)数学符号工具箱(symbolic math toolbox)定点工具箱(fixed-point toolbox)射频工具箱(RF toolbox)1990年,MathWorks软件公司为Matlab提供了新的控制系统模型化图形输入与仿真工具,并命名为Simulab,使得仿真软件进入了模型化图形组态阶段,1992年正式命名为Simulink,即simu(仿真)和link(连接)。

matlab7.0里的simulink为6.0版本,matlab6.5里的simulink为5.0版本。

MATLAB的SIMULINK子库是一个建模、分析各种物理和数学系统的软件,它用框图表示系统的各个环节,用带方向的连线表示各环节的输入输出关系。

启动SIMULINK十分容易,只需在MATLAB的命令窗口键入“SIMULINK”命令,此时出现一个SIMULINK窗口,包含七个模型库,分别是信号源库、输出库、离散系统库、线性系统库、非线性系统库及扩展系统库。

1.信号源库包括阶跃信号、正弦波、白噪声、时钟、常值、文件、信号发生器等各种信号源,其中信号发生器可产生正弦波、方波、锯齿波、随机信号等波形。

2.输出库包括示波器仿真窗口、MATLAB工作区、文件等形式的输出。3.离散系统库包括五种标准模式:延迟,零-极点,滤波器,离散传递函数,离散状态空间。

4.线性系统库提供七种标准模式:加法器、比例环节、积分环节、微分环节、传递函数、零-极点、状态空间。

5.非线性系统库提供十三种常用标准模式:绝对值、乘法、函数、回环特性、死区特性、斜率、继电器特性、饱和特性、开关特性等。6.系统连接库包括输入、输出、多路转换等模块,用于连接其他模块。

7.系统扩展库考虑到系统的复杂性,SIMULINK另提供十二种类型的扩展系统库,每一种又有多种模型供选择。

使用时只要从各子库中取出模型,定义好模型参数,将各模型连接起来,然后设置系统参数,如仿真时间、仿真步长、计算方法等。

SIMULINK提供了Euler、RungeKutta、Gear、Adams及专用于线性系统的LinSim算法,用户根据仿真要求选择适当的算法。

当然,不同版本的Matlab/Simulink内容有所不同。另外,Simulink还提供了诸如航空航天、CDMA、DSP、机械、电力系统等专业模块库,给快速建模提供了很大的便利。

控制理论与控制工程专业方向问题

个人感觉,前三个是理论和应用都有的,比较容易接触到实际的工程实践。将来找工作就有实践经验了。

后两者,鲁棒是比较偏理论的研究,容错也算是鲁棒的一个特性,这类技术真正应用到实际工程中的较少,而且实际中还用不到这么复杂的控制,所以也是偏理论的,这样的话找工作就不容易了,如果想要继续读博搞科研可以考虑。

其实说句心里话,楼主给出的方向都是名称听起来很牛叉,但都没有实际表明具体究竟是做什么的,很多实际中说得比较多的,比如嵌入式,单片机,楼宇自动化,开关电源控制,PLC控制,这些才是企业公司招聘时所列写的专业名称。

由于研究生是导师制,你进实验室具体学什么是看导师的专业特长,虽然分的是某个研究方向,可是大部分并不是严格按照这个方向去研究的。

导师指导学生一定是他自己比较熟悉的方向,我就知道模式识别专业导师跟导航制导的老师一个实验室的情况。

他们一起做项目,虽然学生专业不同,但就学习同样的知识,所以建议最好去问问该专业的学长,他们比较清楚到底他们导师的研究方向,这样从这里边挑选一个比较好的。

简单来说,哪个实验室实践项目多,那么谁的就业就会好。最后预祝考研成功!

神经网络控制的书籍目录

第1章神经网络和自动控制的基础知识1.1人工神经网络的发展史1.1.120世纪40年代——神经元模型的诞生1.1.220世纪50年代——从单神经元到单层网络,形成第一次热潮1.1.320世纪60年代——学习多样化和AN2的急剧冷落1.1.420世纪70年代——在低迷中顽强地发展1.1.520世纪80年代——AN2研究热潮再度兴起1.1.620世纪90年代——再现热潮,产生许多边缘交叉学科1.1.7进入21世纪——实现机器智能的道路漫长而又艰难1.2生物神经元和人工神经元1.2.1生物神经元1.2.2人工神经元1.3生物神经网络和人工神经网络1.3.1生物神经网络1.3.2人工神经网络1.4自动控制的发展史1.4.1从传统控制理论到智能控制1.4.2智能控制的产生与基本特征1.4.3智能控制系统1.5模糊集与模糊控制概述1.5.1模糊集1.5.2模糊隶属函数1.5.3模糊控制1.6从生物神经控制到人工神经控制1.6.1生物神经控制的智能特征1.6.2人工神经控制的模拟范围1.7小结习题与思考题第2章神经计算基础2.1线性空间与范数2.1.1矢量空间2.1.2范数2.1.3赋范线性空间2.1.4L1范数和L2范数2.2迭代算法2.2.1迭代算法的终止准则2.2.2梯度下降法2.2.3最优步长选择2.3逼近论2.3.1Banach空间和逼近的定义2.3.2L2逼近和最优一致逼近2.3.3离散点集上的最小二乘逼近2.4神经网络在线迭代学习算法2.5Z变换2.5.1Z变换的定义和求取2.5.2Z变换的性质2.5.3Z反变换2.6李雅普诺夫意义下的稳定性2.6.1非线性时变系统的稳定性问题2.6.2李雅普诺夫意义下的渐进稳定2.6.3李雅普诺夫第二法2.6.4非线性系统的稳定性分析2.7小结习题与思考题第3章神经网络模型3.1人工神经网络建模3.1.1MP模型3.1.2Hebb学习法则3.2感知器3.2.1单层感知器3.2.2多层感知器3.3BP网络与BP算法3.3.1BP网络的基本结构3.3.2BP算法及步长调整3.4自适应线性神经网络3.5自组织竞争型神经网络3.5.1自组织竞争型神经网络的基本结构3.5.2自组织竞争型神经网络的学习算法3.6小脑模型神经网络3.6.1CMAC的基本结构3.6.2CMAC的工作原理3.6.3CMAC的学习算法与训练3.7递归型神经网络3.7.1DTRNN的网络结构3.7.2实时递归学习算法3.8霍普菲尔德(Hopfield)神经网络3.8.1离散型Hopfield神经网络3.8.2连续型Hopfield神经网络3.8.3求解TSP问题3.9小结习题与思考题第4章神经控制中的系统辨识4.1系统辨识基本原理4.1.1辨识系统的基本结构4.1.2辨识模型4.1.3辨识系统的输入和输出4.2系统辨识过程中神经网络的作用4.2.1神经网络辨识原理4.2.2多层前向网络的辨识能力4.2.3辨识系统中的非线性模型4.3非线性动态系统辨识4.3.1非线性动态系统的神经网络辨识4.3.2单输入单输出非线性动态系统的BP网络辨识4.4多层前向网络辨识中的快速算法4.5非线性模型的预报误差神经网络辨识4.5.1非动态模型建模,4.5.2递推预报误差算法4.6非线性系统逆模型的神经网络辨识4.6.1系统分析逆过程的存在性4.6.2非线性系统的逆模型4.6.3基于多层感知器的逆模型辨识4.7线性连续动态系统辨识的参数估计4.7.1Hopfield网络用于辨识4.7.2Hopfield网络辨识原理4.8利用神经网络联想功能的辨识系统4.8.1二阶系统的性能指标4.8.2系统辨识器基本结构4.8.3训练与辨识操作4.9小结习题与思考题第5章人工神经元控制系统5.1人工神经元的PID调节功能5.1.1人工神经元PID动态结构5.1.2人工神经元闭环系统动态结构5.2人工神经元PID调节器5.2.1比例调节元5.2.2积分调节元5.2.3微分调节元5.3人工神经元闭环调节系统5.3.1系统描述5.3.2Lyapunov稳定性分析5.4人工神经元自适应控制系统5.4.1人工神经元自适应控制系统的基本结构5.4.2人工神经元自适应控制系统的学习算法5.5人工神经元控制系统的稳定性5.6小结习题与思考题第6章神经控制系统6.1神经控制系统概述6.1.1神经控制系统的基本结构6.1.2神经网络在神经控制系统中的作用6.2神经控制器的设计方法6.2.1模型参考自适应方法6.2.2自校正方法6.2.3内模方法6.2.4常规控制方法6.2.5神经网络智能方法6.2.6神经网络优化设计方法6.3神经辨识器的设计方法6.4PID神经控制系统6.4.1PID神经控制系统框图6.4.2PID神经调节器的参数整定6.5模型参考自适应神经控制系统6.5.1两种不同的自适应控制方式6.5.2间接设计模型参考自适应神经控制系统6.5.3直接设计模型参考自适应神经控制系统6.6预测神经控制系统6.6.1预测控制的基本特征6.6.2神经网络预测算法6.6.3单神经元预测器6.6.4多层前向网络预测器6.6.5辐射基函数网络预测器6.6.6Hopfield网络预测器6.7自校正神经控制系统6.7.1自校正神经控制系统的基本结构6.7.2神经自校正控制算法6.7.3神经网络逼近6.8内模神经控制系统6.8.1线性内模控制方式6.8.2内模控制系统6.8.3内模神经控制器6.8.4神经网络内部模型6.9小脑模型神经控制系统6.9.1CMAC控制系统的基本结构6.9.2CMAC控制器设计6.9.3CMAC控制系统实例6.10小结习题与思考题第7章模糊神经控制系统7.1模糊控制与神经网络的结合7.1.1模糊控制的时间复杂性7.1.2神经控制的空间复杂性7.1.3模糊神经系统的产生7.2模糊控制和神经网络的异同点7.2.1模糊控制和神经网络的共同点7.2.2模糊控制和神经网络的不同点7.3模糊神经系统的典型结构7.4模糊神经系统的结构分类7.4.1松散结合7.4.2互补结合7.4.3主从结合7.4.4串行结合7.4.5网络学习结合7.4.6模糊等价结合7.5模糊等价结合中的模糊神经控制器7.5.1偏差P和偏差变化率Δe的获取7.5.2隶属函数的神经网络表达7.6几种常见的模糊神经网络7.6.1模糊联想记忆网络7.6.2模糊认知映射网络7.7小结习题与思考题第8章神经控制中的遗传进化训练8.1生物的遗传与进化8.1.1生物进化论的基本观点8.1.2进化计算8.2遗传算法概述8.2.1遗传算法中遇到的基本术语8.2.2遗传算法的运算特征8.2.3遗传算法中的概率计算公式8.3遗传算法中的模式定理8.3.1模式定义和模式的阶8.3.2模式定理(Schema)8.4遗传算法中的编码操作8.4.1遗传算法设计流程8.4.2遗传算法中的编码规则8.4.3一维染色体的编码方法8.4.4二维染色体编码8.5遗传算法中的适应度函数8.5.1将目标函数转换成适应度函数8.5.2标定适应度函数8.6遗传算法与优化解8.6.1适应度函数的确定8.6.2线性分级策略8.6.3算法流程8.7遗传算法与预测控制8.8遗传算法与神经网络8.9神经网络的遗传进化训练8.9.1遗传进化训练的实现方法8.9.2BP网络的遗传进化训练8.10小结习题与思考题附录常用神经控制术语汉英对照参考文献……

 

你可能感兴趣的:(神经网络,人工智能,深度学习,python)