带上ES一起寻找理想的另一半

你好,我是小航,一个正在变秃、变强的文艺倾年。
本文讲解实战ElasticSearch搜索匹配,欢迎大家多多关注!
一起卷起来叭!

目录

  • 前言:
  • 一、设计数据库
  • 二、初始化项目
  • 三、功能实现
    • 1.父子节点:
    • 2.搜索引擎:
      • 准备工作:
      • 整合Elasticsearch
      • 数据库、索引设计
      • 数据新增
      • 数据检索

前言:

某天某月某日,当我在逛珍爱网的时候,突然想到了自己还木有女朋友,甚至忽略了我是一个男性!哦当然这不是重点,重点是它没有匹配到我理想的另一半,于是我决定,自己写一个搜索匹配,寻找自己理想的另一半。

带上ES一起寻找理想的另一半_第1张图片

一、设计数据库

SQL设计如下:
字典表设计:(用户所处的城市、兴趣…)

CREATE TABLE `data_dict` (
  `id` bigint NOT NULL AUTO_INCREMENT COMMENT '主键ID',
  `node_name` varchar(50) NOT NULL COMMENT '节点名称',
  `parent_id` bigint NOT NULL DEFAULT '0' COMMENT '父ID',
  `type` int NOT NULL COMMENT '类型:0-城市;1-兴趣',
  `node_level` int NOT NULL COMMENT '节点层级',
  `show_status` int NOT NULL COMMENT '是否显示:1-显示;0-不显示',
  `sort` int NOT NULL COMMENT '排序',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

二、初始化项目

项目结构:

带上ES一起寻找理想的另一半_第2张图片

如何初始化项目这里不再赘述,请看往期实战教程

三、功能实现

1.父子节点:

修改DataDictEntity表:

  • 增加逻辑删除注解
  • 增加child属性
package com.example.demo.entity;

import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableLogic;
import com.baomidou.mybatisplus.annotation.TableName;

import java.io.Serializable;
import java.util.Date;
import java.util.List;

import com.fasterxml.jackson.annotation.JsonInclude;
import lombok.Data;

/**
 *
 *
 * @author Liu
 * @email [email protected]
 * @date 2022-10-06 20:48:15
 */
@Data
@TableName("data_dict")
public class DataDictEntity implements Serializable {
	private static final long serialVersionUID = 1L;

	/**
	 * 主键ID
	 */
	@TableId
	private Long id;
	/**
	 * 节点名称
	 */
	private String nodeName;
	/**
	 * 父ID
	 */
	private Long parentId;
	/**
	 * 类型:0-城市;1-兴趣
	 */
	private Integer type;
	/**
	 * 节点层级
	 */
	private Integer nodeLevel;
	/**
	 * 是否显示:1-显示;0-不显示
	 */
	@TableLogic(value = "1", delval = "0")
	private Integer showStatus;
	/**
	 * 排序
	 */
	private Integer sort;

	@JsonInclude(JsonInclude.Include.NON_EMPTY) // 属性为空不参与序列化,这里方便前端处理
	@TableField(exist = false) // 数据库表中不存在该字段
	private List<DataDictEntity> children;
}

逻辑删除的配置也可以通过配置文件配置:

mybatis-plus:
  mapper-locations: classpath:/mapper/*.xml
  global-config:
    db-config:
      id-type: auto  # 主键自增
      logic-delete-value: 1
      logic-not-delete-value: 0

接下来我们编写接口:


控制层
ApiController:

@RestController
public class ApiController {

    @Autowired
    DataDictService dataDictService;

    @GetMapping("/list/tree")
    public Result<List<DataDictEntity>> listWithTree() {
        List<DataDictEntity> entities = dataDictService.listWithTree();
        return new Result<List<DataDictEntity>>().ok(entities);
    }
}

业务层
DataDictServiceImpl:

/**
     * 树形查询
     */
    @Override
    public List<DataDictEntity> listWithTree() {
        // 1.查出所有分类(数据库只查询一次,内存进行修改)
        List<DataDictEntity> entities = baseMapper.selectList(null);
        // 2.组装分类
        return entities.stream().filter(node -> node.getParentId() == 0) // 先过滤得到所有一级分类
                .peek((nodeEntity) -> {
                    nodeEntity.setChildren(getChildrens(nodeEntity, entities)); // 递归得到一级分类的子部门
                }).sorted(Comparator.comparingInt(node -> (node.getSort() == null ? 0 : node.getSort()))).collect(Collectors.toList());
    }

    /**
     * 递归查询子节点
     */
    private List<DataDictEntity> getChildrens(DataDictEntity root, List<DataDictEntity> all) {
        return all.stream().filter(node -> root.getId().equals(node.getParentId())) // 找到root的子部门
                .peek(dept -> {
                    dept.setChildren(getChildrens(dept, all)); // 设置为子部门
                }).sorted(Comparator.comparingInt(node -> (node.getSort() == null ? 0 : node.getSort()))).collect(Collectors.toList());
    }

具体逻辑已经写到注释上面了

我们新增几个测试数据:

INSERT INTO `data_dict` VALUES (1, '1', 0, 0, 1, 1, 2);
INSERT INTO `data_dict` VALUES (2, '1-1', 1, 0, 2, 1, 1);
INSERT INTO `data_dict` VALUES (3, '1-1-1', 2, 0, 3, 1, 1);
INSERT INTO `data_dict` VALUES (4, '2', 0, 0, 1, 1, 1);
INSERT INTO `data_dict` VALUES (5, '3', 0, 0, 1, 0, 1);

带上ES一起寻找理想的另一半_第3张图片
打开测试工具Apifox测试:

发送Get请求:http://localhost:8080/list/tree
返回结果:

{
    "code": 0,
    "msg": "success",
    "data": [
        {
            "id": 4,
            "nodeName": "2",
            "parentId": 0,
            "type": 0,
            "nodeLevel": 1,
            "showStatus": 1,
            "sort": 1
        },
        {
            "id": 1,
            "nodeName": "1",
            "parentId": 0,
            "type": 0,
            "nodeLevel": 1,
            "showStatus": 1,
            "sort": 2,
            "children": [
                {
                    "id": 2,
                    "nodeName": "1-1",
                    "parentId": 1,
                    "type": 0,
                    "nodeLevel": 2,
                    "showStatus": 1,
                    "sort": 1,
                    "children": [
                        {
                            "id": 3,
                            "nodeName": "1-1-1",
                            "parentId": 2,
                            "type": 0,
                            "nodeLevel": 3,
                            "showStatus": 1,
                            "sort": 1
                        }
                    ]
                }
            ]
        }
    ]
}

如果树形节点数据不经常变动,且不是很重要的数据,我们可以考虑把数据缓存起来,加快查询速度

之前Redis详细的缓存实战请看这里:对接外部API + 性能调优

由于这里是一般场景,缓存数量不是很大,没必要使用第三方缓存,使用Spring Cache足够了:

1.开启Cache

@SpringBootApplication
@EnableCaching
public class DemoApplication {

    public static void main(String[] args) {
        SpringApplication.run(DemoApplication.class, args);
    }

}

2.添加Cacheable 注解

/**
     * 树形查询
     * value:缓存名
     * key:显示的指定key Spring官方更推荐,SpEL:Spring Expression Language,Spring 表达式语言
     * sync = true 解决缓存击穿
     */
    @Cacheable(value = {"data_dict"}, key = "#root.method.name", sync = true)
    @Override
    public List<DataDictEntity> listWithTree() {
        // 1.查出所有分类(数据库只查询一次,内存进行修改)
        List<DataDictEntity> entities = baseMapper.selectList(null);
        log.info("查询了数据库!");
        // 2.组装分类
        return entities.stream().filter(node -> node.getParentId() == 0) // 先过滤得到所有一级分类
                .peek((nodeEntity) -> {
                    nodeEntity.setChildren(getChildrens(nodeEntity, entities)); // 递归得到一级分类的子部门
                }).sorted(Comparator.comparingInt(node -> (node.getSort() == null ? 0 : node.getSort()))).collect(Collectors.toList());
    }

我们打开Api文档测试:
调用两次方法后发现:

 查询了数据库!
 # 只出现了一次!

如果需要配置第三方缓存,需要引入依赖(spring-boot-starter-cache),然后在配置文件修改spring.cache.type:

<dependency>
	第三方依赖
dependency>
<dependency>
    <groupId>org.springframework.bootgroupId>
    <artifactId>spring-boot-starter-cacheartifactId>
dependency>

这里就不再赘述了

2.搜索引擎:

准备工作:

(1)下载ealastic search(存储和检索)和kibana(可视化检索)

版本要统一
docker pull elasticsearch:7.4.2
docker pull kibana:7.4.2

(2)配置:

# 将docker里的目录挂载到linux的/mydata目录中
# 修改/mydata就可以改掉docker里的
mkdir -p /mydata/elasticsearch/config
mkdir -p /mydata/elasticsearch/data

# es可以被远程任何机器访问
echo "http.host: 0.0.0.0" >/mydata/elasticsearch/config/elasticsearch.yml

# 递归更改权限,es需要访问
chmod -R 777 /mydata/elasticsearch/

(3)启动Elastic search:

# 9200是用户交互端口 9300是集群心跳端口
# -e指定是单阶段运行
# -e指定占用的内存大小,生产时可以设置32G
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \
-e  "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms64m -Xmx512m" \
-v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-v  /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.4.2 


# 设置开机启动elasticsearch
docker update elasticsearch --restart=always

(4)启动kibana:

# kibana指定了了ES交互端口9200  # 5600位kibana主页端口
docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.56.10:9200 -p 5601:5601 -d kibana:7.4.2


# 设置开机启动kibana
docker update kibana  --restart=always

(5)测试

查看elasticsearch版本信息: http://192.168.56.10:9200

{
    "name": "66718a266132",
    "cluster_name": "elasticsearch",
    "cluster_uuid": "xhDnsLynQ3WyRdYmQk5xhQ",
    "version": {
        "number": "7.4.2",
        "build_flavor": "default",
        "build_type": "docker",
        "build_hash": "2f90bbf7b93631e52bafb59b3b049cb44ec25e96",
        "build_date": "2019-10-28T20:40:44.881551Z",
        "build_snapshot": false,
        "lucene_version": "8.2.0",
        "minimum_wire_compatibility_version": "6.8.0",
        "minimum_index_compatibility_version": "6.0.0-beta1"
    },
    "tagline": "You Know, for Search"
}

显示elasticsearch 节点信息 http://192.168.56.10:9200/_cat/nodes

127.0.0.1 14 99 25 0.29 0.40 0.22 dilm * 66718a266132

66718a266132代表上面的结点
*代表是主节点

访问Kibana: http://192.168.56.10:5601/app/kibana带上ES一起寻找理想的另一半_第4张图片
为了增加ES的安全性,我们这里设置一下密码:

修改elasticsearch.yml文件(6.2或更早版本需要安装X-PACK, 新版本已包含在发行版中)

vim /mydata/elasticsearch/config/elasticsearch.yml

## 增加内容:
xpack.security.enabled: true
xpack.license.self_generated.type: basic
xpack.security.transport.ssl.enabled: true

重启ES服务:

docker restart elasticsearch

进入elasticsearch容器bin目录下初始化密码

docker exec -it elasticsearch /bin/bash
/usr/share/elasticsearch/bin/elasticsearch-setup-passwords interactive
# 因为需要设置 elastic,apm_system,kibana,kibana_system,logstash_system,beats_system,remote_monitoring_user 这些用户的密码,故这个过程比较漫长,耐心设置;注意输入密码的时候看不到是正常的

这里我们将密码修改为:123456
修改密码测试:
浏览器访问:http://192.168.56.10:9200

带上ES一起寻找理想的另一半_第5张图片

- 账号:elastic
- 密码:123456
exit  # 退出之前的容器
# 进入kibana 容器内部
docker exec -it kibana /bin/bash		

vi config/kibana.yml

# kinana.yml 末尾添加:
elasticsearch.username: "elastic"
elasticsearch.password: "123456"

# 重新启动kibana
exit
docker restart kibana

安装ik分词器:

由于所有的语言分词默认使用的都是“Standard Analyzer”,但是这些分词器针对于中文的分词,并不友好。为此需要安装中文的分词器。

查看自己的elasticsearch版本号:

访问:http://192.168.56.10:9200

版本对应关系:

IK version ES version
master 7.x -> master
6.x 6.x
5.x 5.x
1.10.6 2.4.6
1.9.5 2.3.5
1.8.1 2.2.1
1.7.0 2.1.1
1.5.0 2.0.0
1.2.6 1.0.0
1.2.5 0.90.x
1.1.3 0.20.x
1.0.0 0.16.2 -> 0.19.0

ik分词器下载

之前我们已经将elasticsearch容器的/usr/share/elasticsearch/plugins目录,映射到宿主机的 /mydata/elasticsearch/plugins目录下,所以我们直接下载/elasticsearch-analysis-ik-7.4.2.zip文件,然后解压到该文件夹下即可。安装完毕后,记得重启elasticsearch容器

安装完成后,测试分词器:

打开 kibana-DevTool 控制台:

GET _analyze
{
   "analyzer": "ik_smart", 
   "text":"小航是中国人"
}

输出结果:

{
  "tokens" : [
    {
      "token" : "小",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "航",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "是",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "中国人",
      "start_offset" : 3,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 3
    }
  ]
}

小航竟然没有被识别出来!!!

这可不行,得把“小航”当作一个词,所以我们搞个“自定义词库”

安装Nginx:

//先创建一个存放nginx的文件夹
cd /mydata/
mkdir nginx
//下载安装nginx1.10,只是为了获取配置信息,进行配置映射,直接安装会先下载再安装
docker run -p 80:80 --name nginx -d nginx:1.10
//将容器里面的配置文件拷贝到当前目录
docker container cp nginx:/etc/nginx .
//查看mydata的nginx下面有没有文化,有则表示拷贝成功,则可以停止服务
docker stop nginx
docker rm nginx
//为了防止后面安装新的nginx会出现的问题,进入mydata文件夹,再将之前复制的文件重新命名
mv nginx conf
//再创建nginx,将conf移动到nginx里面
mkdir nginx
mv conf nginx/
//再安装新的nginx 
 docker run -p 80:80 --name nginx \
 -v /mydata/nginx/html:/usr/share/nginx/html  \
 -v /mydata/nginx/logs:/var/log/nginx \
 -v /mydata/nginx/conf/:/etc//nginx \
 -d nginx:1.10
//再在nginx的html下面创建一个文件夹
cd  /mydata/nginx/html
mkdir es
cd es
//再创建一个fenci.txt,追加内容“小航”,并查看
echo '小航' >> ./fenci.txt
cat fenci.txt 

nginx启动后测试访问该文件:
http://192.168.56.10/es/fenci.txt
带上ES一起寻找理想的另一半_第6张图片

修改/mydata/elasticsearch/plugins/elasticsearch-analysis-ik-7.4.2/config中的IKAnalyzer.cfg.xml 去掉注释,修改地址


DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
	<comment>IK Analyzer 扩展配置comment>
	
	<entry key="ext_dict">entry>
	 
	<entry key="ext_stopwords">entry>
	
	<entry key="remote_ext_dict">http://192.168.56.10/es/fenci.txtentry> 
	
	
properties>

!!!重启es:

docker restart elasticsearch

再次测试:

GET _analyze
{
   "analyzer": "ik_smart", 
   "text":"小航是中国人"
}

输出结果:

{
  "tokens" : [
    {
      "token" : "小航",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "中国人",
      "start_offset" : 3,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}

Nice!

整合Elasticsearch

如果您对ES的基础操作不太了解,请先学习!后期有时间再出ES快速上手教程,本期只写准备环境和整合

Java操作es有两种方式:

1)9300: TCP

  • spring-data-elasticsearch:transport-api.jar;
  • springboot版本不同,ransport-api.jar不同,不能适配es版本
    7.x已经不建议使用,8以后就要废弃

2)9200: HTTP

  • jestClient: 非官方,更新慢;
  • RestTemplate:模拟HTTP请求,ES很多操作需要自己封装,麻烦;
  • HttpClient:同上;
  • Elasticsearch-Rest-Client:官方RestClient,封装了ES操作,API层次分明,上手简单;

我们最终选择Elasticsearch-Rest-Client(elasticsearch-rest-high-level-client),具体说明文档:https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html

1.导入依赖:(springboot这里默认给的版本是7.6,和咱们的不一样,这里排除重新引入)

<properties>
    <elasticsearch.version>7.4.2elasticsearch.version>
properties>


        <dependency>
            <groupId>org.elasticsearchgroupId>
            <artifactId>elasticsearchartifactId>
            <version>${elasticsearch.version}version>
        dependency>
        <dependency>
            <groupId>org.elasticsearch.clientgroupId>
            <artifactId>elasticsearch-rest-clientartifactId>
            <version>${elasticsearch.version}version>
        dependency>
        <dependency>
            <groupId>org.elasticsearch.clientgroupId>
            <artifactId>elasticsearch-rest-high-level-clientartifactId>
            <version>${elasticsearch.version}version>
            <exclusions>
                <exclusion>
                    <groupId>org.elasticsearchgroupId>
                    <artifactId>elasticsearchartifactId>
                exclusion>
                <exclusion>
                    <groupId>org.elasticsearch.clientgroupId>
                    <artifactId>elasticsearch-rest-clientartifactId>
                exclusion>
            exclusions>
        dependency>

修改后:
带上ES一起寻找理想的另一半_第7张图片
修改前:
带上ES一起寻找理想的另一半_第8张图片

2.配置信息:

application.yml:

elasticsearch:
  schema: http
  host: 192.168.56.10
  port: 9200
  username: elastic
  password: 123456

编写ElasticSearchConfig配置类:

package com.example.demo.config;

import lombok.Data;
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.elasticsearch.client.*;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
 * @author xh
 * @Date 2022/10/8
 */
@Data
@Configuration
@ConfigurationProperties(prefix = "elasticsearch")
public class ElasticSearchConfig {

    public static final RequestOptions COMMON_OPTIONS;

    static {
        RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
        // 默认缓存限制为100MB,此处修改为30MB。
        builder.setHttpAsyncResponseConsumerFactory(
                new HttpAsyncResponseConsumerFactory
                        .HeapBufferedResponseConsumerFactory(30 * 1024 * 1024));
        COMMON_OPTIONS = builder.build();
    }

    private String schema;
    private String host;
    private Integer port;
    private String username;
    private String password;

    @Bean
    public RestHighLevelClient client() {
        // Elasticsearch需要basic auth验证
        final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
        // 配置账号密码
        credentialsProvider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials(username, password));
        // 通过builder创建rest client,配置http client的HttpClientConfigCallback。
        RestClientBuilder builder = RestClient.builder(new HttpHost(host, port, schema))
                .setHttpClientConfigCallback(httpClientBuilder -> {
                    httpClientBuilder.disableAuthCaching();
                    return httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
                });
        return new RestHighLevelClient(builder);
    }
}

3.测试:

@SpringBootTest
class DemoApplicationTests {

    @Autowired
    RestHighLevelClient client;

    /**
     * 测试获取elasticsearch对象
     */
    @Test
    void contextLoads() {
        System.out.println(client);
    }
    
    /**
     * 新建索引测试
     **/
	@Test
    public void indexData() throws IOException {

        // 设置索引
        IndexRequest indexRequest = new IndexRequest ("users");
        indexRequest.id("1");

        User user = new User();
        user.setUsername("张三");
        Gson gson = new Gson();
        String jsonString = gson.toJson(user);

        //设置要保存的内容,指定数据和类型
        indexRequest.source(jsonString, XContentType.JSON);

        //执行创建索引和保存数据
        IndexResponse index = client.index(indexRequest, ElasticSearchConfig.COMMON_OPTIONS);

        System.out.println(index);

    }

    @Data
    class User {
        private String username;
    }

}

运行结果:

org.elasticsearch.client.RestHighLevelClient@47248a48

说明elasticsearch对象成功加载到spring上下文中


IndexResponse[index=users,type=_doc,id=1,version=1,result=created,seqNo=0,primaryTerm=1,shards={"total":2,"successful":1,"failed":0}]

索引建立成功

数据库、索引设计

新增数据库:data_info

CREATE TABLE `dict_info` (
	`id` BIGINT NOT NULL AUTO_INCREMENT COMMENT '主键ID',
	`dict_id` BIGINT NOT NULL COMMENT '节点ID',
	`info_id` BIGINT NOT NULL COMMENT '信息ID',
	`deleted` TINYINT NOT NULL COMMENT '是否删除:0-未删除;1-已删除',
PRIMARY KEY ( `id`, `dict_id`, `info_id` ) 
) ENGINE = INNODB DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_0900_ai_ci;

建立data_info索引:

PUT data_info
{
    "mappings":{
        "properties": {
        	"dataId":{ "type": "long" },
            "dataTitle": { 
                "type": "text",
                "analyzer": "ik_max_word",
                "search_analyzer":"ik_smart"
            },
            "dataInfo": {
                "type": "text",
                "analyzer": "ik_max_word",
                "search_analyzer":"ik_smart"
            },
            "dataLike":{ "type":"long" },
            "dataImg":{
                "type": "keyword",
                "index": false, 
                "doc_values": false 
            },
    		"node": {
                "type": "nested",
                "properties": {
                    "nodeId": {"type": "long"  },
                    "nodeName": {
                        "type": "keyword",
                        "index": false,
                        "doc_values": false
                    }
                }
            }
        }
    }
}

索引说明:

PUT data_info
{
    "mappings":{
        "properties": {
        	"dataId":{ "type": "long" }, # 信息ID
            "dataTitle": { # 信息标题
                "type": "text",
                "analyzer": "ik_max_word",
                "search_analyzer":"ik_smart"
            },
            "dataInfo": { # 简略信息
                "type": "text",
                "analyzer": "ik_max_word",
                "search_analyzer":"ik_smart"
            },
            "dataLike":{ "type":"long" }, # 信息点赞量
            "dataImg":{ # 信息预览图
                "type": "keyword",
                "index": false,  # 不可被检索,不生成index,只用做页面使用
                "doc_values": false # 不可被聚合,默认为true
            },
    		"node": { # 节点信息
                "type": "nested",
                "properties": {
                    "nodeId": {"type": "long"  },
                    "nodeName": {
                        "type": "keyword",
                        "index": false,
                        "doc_values": false
                    }
                }
            }
        }
    }
}

数据新增

ApiController新增新的接口:save

	@Autowired
    DataDictService dataDictService;

    @Autowired
    DataInfoService dataInfoService;

    @Autowired
    RestHighLevelClient client;


	@PostMapping("/save")
    public Result<String> saveData(@RequestBody List<ESModel> esModels) {
        boolean flag = dataInfoService.saveDatas(esModels);
        if(flag) {
            // TODO 审核后可检索到
            flag = esUpdate(esModels);
        }
        if(flag) {
            return new Result<String>().ok("数据保存成功!");
        } else {
            return new Result<String>().error("数据保存失败!");
        }
    }

    private boolean esUpdate(List<ESModel> esModel) {
        // 1.给ES建立一个索引 dataVo
        BulkRequest bulkRequest = new BulkRequest();
        for (ESModel model : esModel) {
            // 设置索引
            IndexRequest indexRequest = new IndexRequest("data_info");
            // 设置索引id
            indexRequest.id(model.getDataId().toString());
            Gson gson = new Gson();
            String jsonString = gson.toJson(model);
            indexRequest.source(jsonString, XContentType.JSON);
            // add
            bulkRequest.add(indexRequest);
        }
        // bulk批量保存
        BulkResponse bulk = null;
        try {
            bulk = client.bulk(bulkRequest, ElasticSearchConfig.COMMON_OPTIONS);
        } catch (IOException e) {
            e.printStackTrace();
        }
        boolean hasFailures = bulk.hasFailures();
        if(hasFailures){
            List<String> collect = Arrays.stream(bulk.getItems()).map(BulkItemResponse::getId).collect(Collectors.toList());
            log.error("ES新增错误:{}",collect);
        }
        return !hasFailures;
    }

具体解释都在注释中,这里就不赘述了。

DataInfoServiceImpl:

package com.example.demo.service.impl;

import com.example.demo.entity.DataDictEntity;
import com.example.demo.vo.ESModel;
import org.springframework.stereotype.Service;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;

import com.example.demo.dao.DataInfoDao;
import com.example.demo.entity.DataInfoEntity;
import com.example.demo.service.DataInfoService;

import java.util.ArrayList;
import java.util.List;


@Service("dataInfoService")
public class DataInfoServiceImpl extends ServiceImpl<DataInfoDao, DataInfoEntity> implements DataInfoService {

    @Override
    public boolean saveDatas(List<ESModel> esModels) {
        List<DataInfoEntity> dataInfoEntities = new ArrayList<>();
        for (ESModel esModel : esModels) {
            DataInfoEntity dataInfoEntity = new DataInfoEntity();
            dataInfoEntity.setImg(esModel.getDataImg());
            dataInfoEntity.setInfo(esModel.getDataInfo());
            dataInfoEntity.setLikes(0L);
            dataInfoEntity.setTitle(esModel.getDataTitle());
            dataInfoEntities.add(dataInfoEntity);
            baseMapper.insert(dataInfoEntity);
            esModel.setDataId(dataInfoEntity.getId());
            esModel.setDataLike(dataInfoEntity.getLikes());
        }
//        return saveBatch(dataInfoEntities);
        return true;
    }
}

TODO:这里批量处理待优化,先鸽这!

启动项目测试:
测试数据:

[
    {
        "dataTitle": "title",
        "dataInfo": "dataInfo",
        "dataImg": "dataImg",
        "nodes": [
            {
                "nodeId": 1,
                "nodeName": "1"
            }
        ]
    }
]

返回结果:

{
    "code": 0,
    "msg": "success",
    "data": "数据保存成功!"
}

我们打开ES控制台查看一下结果:

命令:
GET /data_info/_search
{
  "query": {"match_all": {}}
}
结果:
{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "data_info",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "dataId" : 1,
          "dataTitle" : "title",
          "dataInfo" : "dataInfo",
          "dataLike" : 0,
          "dataImg" : "dataImg",
          "nodes" : [
            {
              "nodeId" : 1,
              "nodeName" : "1"
            }
          ]
        }
      }
    ]
  }
}

Perfectly!

数据检索

我们先来思考一下检索条件可能有哪些:

全文检索:dataTitle、dataInfo
排序:dataLike(点赞量)
过滤:node.id
聚合:node

keyword=小航&
sort=dataLike_desc/asc&
node=3:4

额,貌似需求有点简单,好像不够把知识点都串上

增加一组测试数据:

[
    {
        "dataTitle": "速度还是觉得还是觉得合适机会减少",
        "dataInfo": "网络新词 网络上经常会出现一些新词,比如“蓝瘦香菇”,蓝瘦香菇默认情况下会被分词,分词结果如下所示 蓝,瘦,香菇 这样的分词会导致搜索出很多不相关的结果,在这种情况下,我们使用扩展词库",
        "dataImg": "dataImg",
        "nodes": [
            {
                "nodeId": 1,
                "nodeName": "节点1"
            }
        ]
    }
]

编写DSL查询语句:

GET /data_info/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "multi_match": {
            "query": "速度",
            "fields": [
              "dataTitle",
              "dataInfo"
            ]
          }
        }
      ],
      "filter": {
        "nested": {
          "path": "nodes",
          "query": {
            "bool": {
              "must": [
                {
                  "term": {
                    "nodes.nodeId": {
                      "value": 1
                    }
                  }
                }
              ]
            }
          }
        }
      }
    }
  },
  "sort": [
    {
      "dataLike": {
        "order": "desc"
      }
    }
  ],
  "from": 0,
  "size": 5,
  "highlight": {
    "fields": {
      "dataTitle": {},
      "dataInfo": {}
    },
    "pre_tags": "",
    "post_tags": ""
  }
}

查询结果:

{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [
      {
        "_index" : "data_info",
        "_type" : "_doc",
        "_id" : "17",
        "_score" : null,
        "_source" : {
          "dataId" : 17,
          "dataTitle" : "速度还是觉得还是觉得合适机会减少",
          "dataInfo" : "网络新词 网络上经常会出现一些新词,比如“蓝瘦香菇”,蓝瘦香菇默认情况下会被分词,分词结果如下所示 蓝,瘦,香菇 这样的分词会导致搜索出很多不相关的结果,在这种情况下,我们使用扩展词库",
          "dataLike" : 0,
          "dataImg" : "dataImg",
          "nodes" : [
            {
              "nodeId" : 1,
              "nodeName" : "节点1"
            }
          ]
        },
        "highlight" : {
          "dataTitle" : [
            "速度还是觉得还是觉得合适机会减少"
          ]
        },
        "sort" : [
          0
        ]
      }
    ]
  }
}

接下来我们使用Java的方式操作DSL:
SearchParam 请求参数:

package com.example.demo.vo;

import lombok.Data;

import java.util.List;

/**
 * @author xh
 * @Date 2022/10/12
 */
@Data
public class SearchParam {
    // 页面传递过来的全文匹配关键字:keyword=小航
    private String keyword;
    //排序条件:sort=dataLike_desc/asc
    private String sort;
    /*** 按照节点进行筛选 */
    // node=3:4
    private List<String> nodes;
    /*** 页码*/
    private Integer pageNum = 1;
    /*** 原生所有查询属性*/
    private String _queryString;
}

SearchResult 返回结果:

package com.example.demo.vo;

import com.example.demo.entity.DataInfoEntity;
import lombok.Data;

import java.util.List;

/**
 * @author xh
 * @Date 2022/10/12
 */
@Data
public class SearchResult {
    /** 查询到所有的DataInfos*/
    private List<DataInfoEntity> dataInfos;
    /*** 当前页码*/
    private Integer pageNum;
    /** 总记录数*/
    private Long total;
    /** * 总页码*/
    private Integer totalPages;
}

由于我们的需求有:每条信息对应的标签也需要显示

@Data
@TableName("data_info")
public class DataInfoEntity implements Serializable {
	private static final long serialVersionUID = 1L;

	/**
	 * 主键ID
	 */
	@TableId(type = IdType.AUTO)
	private Long id;
	/**
	 * 标题
	 */
	private String title;
	/**
	 * 详情
	 */
	private String info;
	/**
	 * 标题图
	 */
	private String img;
	/**
	 * 点赞量
	 */
	private Long likes;
	/**
	 * 标签
	 */
	@TableField(exist = false)
	private List<String> nodeNames;

}

编写接口:
ApiController

	@Autowired
    DataDictService dataDictService;

    @Autowired
    DataInfoService dataInfoService;

    @Autowired
    RestHighLevelClient client;

    public static final Integer PAGE_SIZE = 5;


	@GetMapping("/search")
    public Result<SearchResult> getSearchPage(SearchParam searchParam, HttpServletRequest request) {
        // TODO 请求参数加密 && 反爬虫
        // 获取请求参数
        searchParam.set_queryString(request.getQueryString());
        SearchResult result = getSearchResult(searchParam);
        return new Result<SearchResult>().ok(result);
    }

    /**
     * 得到请求结果
     */
    public SearchResult getSearchResult(SearchParam searchParam) {//根据带来的请求内容封装
        SearchResult searchResult= null;
        // 通过请求参数构建查询请求
        SearchRequest request = buildSearchRequest(searchParam);
        try {
            SearchResponse searchResponse = client.search(request,
                    ElasticSearchConfig.COMMON_OPTIONS);
            // 将es响应数据封装成结果
            searchResult = buildSearchResult(searchParam,searchResponse);
        } catch (IOException e) {
            e.printStackTrace();
        }
        return searchResult;
    }

    private SearchResult buildSearchResult(SearchParam searchParam, SearchResponse searchResponse) {
        SearchResult result = new SearchResult();

        SearchHits hits = searchResponse.getHits();
        //1. 封装查询到的商品信息
        if (hits.getHits()!=null&&hits.getHits().length>0){
            List<DataInfoEntity> dataInfoEntities = new ArrayList<>();
            for (SearchHit hit : hits) {
                // 获取JSON并解析为ESModel
                String sourceAsString = hit.getSourceAsString();
                Gson gson = new Gson();
                ESModel esModel = gson.fromJson(sourceAsString, new TypeToken<ESModel>() {
                }.getType());
                // ESModel转DataInfoEntity
                DataInfoEntity dataInfoEntity = new DataInfoEntity();
                dataInfoEntity.setTitle(esModel.getDataTitle());
                dataInfoEntity.setInfo(esModel.getDataInfo());
                dataInfoEntity.setImg(esModel.getDataImg());
                dataInfoEntity.setId(esModel.getDataId());
                dataInfoEntity.setLikes(esModel.getDataLike());
                dataInfoEntity.setNodeNames(esModel.getNodes().stream()
                        .map(ESModel.Node::getNodeName).collect(Collectors.toList()));
                //设置高亮属性
                if (!StringUtils.isEmpty(searchParam.getKeyword())) {
                    HighlightField dataTitle = hit.getHighlightFields().get("dataTitle");
                    if(dataTitle != null) {
                        String highLight = dataTitle.getFragments()[0].string();
                        dataInfoEntity.setTitle(highLight);
                    }
                    HighlightField dataInfo = hit.getHighlightFields().get("dataInfo");
                    if(dataInfo != null) {
                        String highLight = dataInfo.getFragments()[0].string();
                        dataInfoEntity.setInfo(highLight);
                    }
                }
                dataInfoEntities.add(dataInfoEntity);
            }
            result.setDataInfos(dataInfoEntities);
        }

        //2. 封装分页信息
        //2.1 当前页码
        result.setPageNum(searchParam.getPageNum());
        //2.2 总记录数
        long total = hits.getTotalHits().value;
        result.setTotal(total);
        //2.3 总页码
        Integer totalPages = (int)total % PAGE_SIZE == 0 ?
                (int)total / PAGE_SIZE : (int)total / PAGE_SIZE + 1;
        result.setTotalPages(totalPages);
        return result;
    }


    /**
     * 构建请求语句
     */
    private SearchRequest  buildSearchRequest(SearchParam searchParam) {
        // 用于构建DSL语句
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        //1. 构建bool query
        BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder();
        //1.1 bool must
        if (!StringUtils.isEmpty(searchParam.getKeyword())) {
            boolQueryBuilder.must(
                    QueryBuilders.multiMatchQuery(searchParam.getKeyword(), "dataTitle", "dataInfo")
            );
        }
        // 1.2 filter nested
        List<Long> nodes = searchParam.getNodes();
        BoolQueryBuilder queryBuilder = new BoolQueryBuilder();
        if (nodes!=null && nodes.size() > 0) {
            nodes.forEach(nodeId ->{
                queryBuilder.must(QueryBuilders.termQuery("nodes.nodeId", nodeId));
            });
        }
        NestedQueryBuilder nestedQueryBuilder = QueryBuilders.nestedQuery("nodes", queryBuilder, ScoreMode.None);
        boolQueryBuilder.filter(nestedQueryBuilder);
        //1.3 bool query构建完成
        searchSourceBuilder.query(boolQueryBuilder);
        //2. sort  eg:sort=dataLike_desc/asc
        if (!StringUtils.isEmpty(searchParam.getSort())) {
            String[] sortSplit = searchParam.getSort().split("_");
            searchSourceBuilder.sort(sortSplit[0], "asc".equalsIgnoreCase(sortSplit[1]) ? SortOrder.ASC : SortOrder.DESC);
        }

        //3. 分页 // 是检测结果分页
        searchSourceBuilder.from((searchParam.getPageNum() - 1) * PAGE_SIZE);
        searchSourceBuilder.size(PAGE_SIZE);

        //4. 高亮highlight
        if (!StringUtils.isEmpty(searchParam.getKeyword())) {
            HighlightBuilder highlightBuilder = new HighlightBuilder();
            highlightBuilder.field("dataTitle");
            highlightBuilder.field("dataInfo");
            highlightBuilder.preTags("");
            highlightBuilder.postTags("");
            searchSourceBuilder.highlighter(highlightBuilder);
        }

        log.debug("构建的DSL语句 {}",searchSourceBuilder.toString());
        SearchRequest request = new SearchRequest(new String[]{"data_info"}, searchSourceBuilder);
        return request;
    }

测试接口:
请求地址:http://localhost:8080/search?keyword=速度&sort=dataLike_desc&nodes=1 GET请求

返回结果:

{
    "code": 0,
    "msg": "success",
    "data": {
        "dataInfos": [
            {
                "id": 17,
                "title": "速度还是觉得还是觉得合适机会减少",
                "info": "网络新词 网络上经常会出现一些新词,比如“蓝瘦香菇”,蓝瘦香菇默认情况下会被分词,分词结果如下所示 蓝,瘦,香菇 这样的分词会导致搜索出很多不相关的结果,在这种情况下,我们使用扩展词库",
                "img": "dataImg",
                "likes": 0,
                "nodeNames": [
                    "节点1"
                ]
            }
        ],
        "pageNum": 1,
        "total": 1,
        "totalPages": 1
    }
}

大功告成!

你可能感兴趣的:(大数据,搜索引擎,数据库,spring,boot)