- 基于Knative的无服务器引擎重构:实现毫秒级冷启动的云原生应用浪潮
桂月二二
云原生knativeserverless
引言:从微服务到无状态的量子跃迁当容器启动时间仍困在900ms高位时,某视频直播平台采用Knative将突发流量处理时效提升40倍,弹性扩缩响应速度突破至120ms级。基于流量预测的预启动算法与内核级资源复用池两大技术创新,正在重新定义Serverless时代的性能边界。IDC最新报告指出,采用该架构的企业资源利用率平均提升至78%,年度计算成本直降320万美元。一、传统FaaS模型的性能桎梏1.
- 前端构建工具——Webpack和Vite的主要区别
像素检测仪
前端前端webpack
目录1.设计理念2.性能表现3.使用场景4.配置复杂度5.生态系统6.性能对比总结7.选择建议1.设计理念Webpack设计理念:Webpack是一个通用的模块打包工具,它将项目中的各种资源(如JavaScript、CSS、图片等)视为模块,并通过loader和plugin进行处理和打包。适用范围:适用于复杂项目,支持高度定制化,适合需要精细控制构建过程的场景。Vite设计理念:Vite(法语“快
- 学习笔记分享-快速掌握前端-html进阶(利用telnet发送json请求、利用telnet发送multipart请求)
2301_81243975
前端学习笔记
前言图片上面的personal表示只有图片上面的一行语句是解释图片内容的、local表示这个图片所在标题下的所有语句都是解释图片内容的、global表示有多个标题下的所有语句都是解释图片内容的我是一名大二的学生,学了差不多一年java技术栈了,想记录一下自己对知识点的心得,目前还是个小白,期望大佬们可以指出我笔记中的不足之处、对知识点的认知错误、笔记结构的混乱等这些图片内容都是在观看黑马课程时的视
- dochub实践-资源参考
xiaohangwj
项目开源仓库-gitee开源仓库-github教程文档依赖后端-beego开源仓库入门教程前端-Flat-UI开源仓库样式文档
- 题解 | #数组中出现次数超过一半的数字#哈希最简单的解法
2301_79125642
java
前端要转测试大佬们,我是软件工程专业的,毕业后又培训了半年前端,现在公司要我转软件测试,初中级都可以,学着麻烦吗?大概得多长时间?转转java凉面一个数组基本有序应该采用哪种排序方法为什么要有线程池,线程太多会怎么样??阻塞队列与普通队列的区别是?递归与非递归区别是什么?各自的优缺点?递归如何转为非递归题解|#数组中出现次数超过一半的数字#哈希最简单的解法classSolution{public:
- 强化学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是强化学习?强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,它关注的是智能体(Agent)如何在环境中通过与环境交互来学习最优的行为策略。与其他机器学习方法不同,强化学习并不依赖于预先标注的数据,而是通过试错的方式来学习。想象一下,你正在训练一只小狗学习坐下。你不会给它看成千上万张“坐下”的照片,而是会给它一些指令,比如“坐下”,如果它照
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- 网络软件架构设计与架构风格深入解析.zip
满天乱走
本文还有配套的精品资源,点击获取简介:《架构风格与基于网络的软件架构设计》一书提供了关于如何构建高效、可扩展网络系统的重要见解。文档详细介绍了架构风格的核心概念及其在网络软件设计中的应用,包括分布式系统特性的考量、可扩展性策略、安全性、性能优化和维护性等方面。本书通过分析如客户端-服务器、SOA和微服务等架构风格,指导开发者理解并复用成功的设计模式,同时强调安全性和性能优化在架构设计中的重要性,最
- 关于前后端分离跨域问题——使用DeepSeek分析查错
潮落拾贝
解决跨域问题使用DeepSeek协助开发
我前端使用antdesignvuepro框架,后端使用kratos框架开发。因为之前也解决过跨域问题,正常是在后端的http请求中加入中间件,设置跨域需要通过的字段即可,代码如下所示:funcNewHTTPServer(c*conf.Server,s*conf.Secret,rolesm*service.RolesManageService,tracertrace.TracerProvider,l
- python股票分析系统部署操作过程及代码实现
大懒猫软件
python开发语言flaskplotlyapirestful
部署一个股票分析系统涉及多个步骤,包括后端服务、前端界面和实时数据更新。以下是一个详细的部署过程,涵盖从代码编写到服务器部署的完整步骤。1.系统架构概述后端:使用Flask提供RESTfulAPI和数据处理服务。前端:使用PlotlyDash构建动态界面,实时显示股票价格走势。数据源:从金融数据API(如AlphaVantage、YahooFinance)获取实时数据。2.系统开发步骤2.1安装必
- 运用python制作一个完整的股票分析系统
大懒猫软件
python开发语言djangobeautifulsoup
使用python制作一个股票分析系统,可以通过股票价格走势动态界面,实时动态监测不同类型股票的变化情况。以下是一个完整的股票分析系统开发指南,包括股票价格走势动态界面和实时监测功能。这个系统将结合网络爬虫、数据分析、机器学习和可视化技术,帮助你实时监测不同类型股票的变化情况。1.系统功能概述数据采集:使用网络爬虫技术从财经网站采集股票数据。数据处理:计算技术指标(如KDJ、BOLL)并进行数据预处
- Google Cloud技术学习总结
谭俊杰Jerry
人工智能
GoogleCloudPlatform(GCP)是由Google提供的一套云计算服务,帮助企业和开发者利用Google的基础设施来构建、部署和扩展应用程序。GCP提供了广泛的服务,涵盖计算、存储、数据分析、机器学习和网络等领域。以下是GoogleCloud的技术总结:核心服务计算服务GoogleComputeEngine:提供虚拟机(VM)实例,支持自定义配置,适合各种工作负载。GoogleKub
- DeepSeek R1蒸馏版模型部署的实战教程
herosunly
DeepSeek从入门到精通deepseek大模型人工智能实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- uniapp uni-icons组件自定义图标
xcLeigh
uniapp技术点解析uni-app前端java
文章目录1️⃣uni-icons组件1.1引用位置1.2FontEditor简介1.2FontEditor使用结束语优质源码分享uni-app是一个使用Vue.js(opensnewwindow)开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、Web(响应式)、以及各种小程序、快应用等多个平台。1️⃣uni-icons组件1.1引用位置1.2FontEditor简介Fo
- Java 后端面试必备:Java 中 == 和 equals 有什么区别
刘小炮吖i
Java后端开发面试题面试java
欢迎并且感谢大家指出我的问题,由于本人水平有限,有些内容写的不是很全面,只是把比较实用的东西给写下来,如果有写的不对的地方,还希望各路大牛多多指教!谢谢大家!大家如果对Java后端面试题感兴趣可以关注一下面试题专栏引言在Java后端开发的面试中,“Java中==和equals有什么区别”是一个高频问题。虽然这看似基础,但其中蕴含的原理和细节,对于深入理解Java的内存管理和对象比较机制至关重要。接
- 【最新】沃德协会管理系统源码+uniapp前端+环境教程
kaui52066
kaui52066精品源码uni-app小程序前端开源php生活
一.系统介绍一款基于FastAdmin+ThinkPHP+Uniapp开发的商协会系统,新一代数字化商协会运营管理系统,以“智慧化会员体系、智敏化内容运营、智能化活动构建”三大板块为基点,实施功能全场景覆盖,一站式解决商协会需求壁垒,有效快速建立自有数字化管理体系、提升组织管理效能、增强会员粘性、沟通连接市场,真正做到为构建有影响力的现代化智慧型组织赋能。二.测试环境系统环境:CentOS、运行环
- 强化学习在连续动作空间的应用:DDPG与TD3
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1强化学习简介强化学习(ReinforcementLearning,简称RL)是一种机器学习方法,它通过让智能体(Agent)在环境(Environment)中与环境进行交互,学习如何根据观察到的状态(State)选择动作(Action),以最大化某种长期累积奖励(Reward)的方法。强化学习的核心问题是学习一个策略(Policy),即在给定状态下选择动作的映射关系。1.2连续动
- 书籍-《机器学习的秘密:它是如何工作的以及它对你的意义》
机器学习深度学习人工智能
书籍:SecretsOfMachineLearning:HowItWorksAndWhatItMeansForYou作者:TomKohn出版:WorldScientificPublishingCoPteLtd编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习的秘密:它是如何工作的以及它对你的意义》01书籍介绍在众多关于机器学习和人工智能的技术文献及充满恐慌的书籍中,《机器学习的秘密》犹
- ROS2软件架构全面解析-学习如何设计通信中间件框架
chinamaoge
ROS2DDS通信中间件ROS2ROS通信中间件
前言ROS(RobotOperatingSystem)2是一个用于开发机器人应用的软件平台,也称为机器人软件开发工具包(SDK)。ROS2是ROS1的迭代升级版本,最主要的升级点是引入DDS(DataDistributionService)为基础的底层通信系统。为解决ROS1存在主要几个缺陷:为解决一个主节点通信故障(ROSMaster),需要对所有现有的Client库进行单独的补丁处理,并且每个
- 用AI提升电商平台的客户体验:从个性化推荐到智能客服
Echo_Wish
人工智能前沿技术人工智能
用AI提升电商平台的客户体验:从个性化推荐到智能客服随着电商行业的竞争日益激烈,如何在海量商品中脱颖而出,吸引和保持客户的关注,成为平台生存和发展的关键。而在这场竞争中,人工智能(AI)正在发挥着越来越重要的作用。AI不仅可以优化电商平台的后台操作,还能在前端提供更为个性化、智能化的客户体验,让消费者感受到前所未有的便捷与高效。本文将从个性化推荐、智能客服、智能搜索等方面,详细探讨如何通过AI技术
- python 学习曲线函数_如何使用学习曲线来诊断你的LSTM模型的行为?(附代码)...
weixin_39576066
python学习曲线函数
LSTM是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。在自然语言处理、语言识别等一系列的应用上都取得了很好的效果。《LongShortTermMemoryNetworkswithPython》是澳大利亚机器学习专家JasonBrownlee的著作,里面详细介绍了LSTM模型的原理和使用。该书总共分为十四个章节,具体如下:第一章:什么是LSTMs?第二章:怎么样训练
- HTML、Vue和PHP文件的区别与联系
生信天地
htmlvue.jsphp
一、核心区别类型性质执行环境功能特点.html静态标记语言浏览器直接解析定义页面结构和内容,无逻辑处理能力.vue前端框架组件文件浏览器/构建工具整合HTML模板+JS逻辑+CSS样式,支持动态数据绑定和组件化开发.php服务器端脚本语言文件Web服务器执行动态生成HTML内容,支持数据库操作和业务逻辑处理二、联系与协作PHP与HTMLPHP文件通过标签嵌入HTML,服务器执行PHP代码后输出纯H
- 【云原生进阶之数据库技术】第四章-GaussDB-关键技术-2.4.1-GaussDB存储引擎层关键技术方案
江中散人
云原生进阶-数据库专栏云原生进阶-PaaS专栏后台开发专栏数据库云原生gaussdbdatabase存储引擎
1存储引擎概览早期计算机程序通过文件系统管理数据,到了20世纪60年代这种方式就开始不能满足数据管理要求了,用户逐渐对数据并发写入的完整性、高效的检索提出更高的要求。由于机械磁盘的随机读写性能问题,从20世纪80年代开始,大多数数据库一直围绕着减少随机读写磁盘进行设计。主要思路是把对数据页面的随机写盘转化为对WAL(WriteAheadLog,预写式日志)的顺序写盘,WAL持久化完成,事务就算提交
- 【漫话机器学习系列】041.信息丢失(dropout)
IT古董
漫话机器学习系列专辑机器学习人工智能深度学习
信息丢失(Dropout)Dropout是一种广泛应用于神经网络训练中的正则化技术,旨在减少过拟合(overfitting),提高模型的泛化能力。虽然"信息丢失"(dropout)这个术语在某些情况下可能引起误解,指的并非是数据的丢失,而是训练过程中故意“丢弃”神经网络中的部分神经元。这种做法可以避免模型过于依赖于某些特定的神经元,从而提高模型在新数据上的表现。Dropout的工作原理在神经网络的
- 第二章:12.3 建立表现基准
望云山190
基准性能水平人工智能机器学习
背景介绍语音识别是一种常见的机器学习应用,用户通过语音输入代替键盘输入,系统需要将语音转换为文本。在这个过程中,算法的性能可以通过训练误差和交叉验证误差来评估。误差定义训练误差(Jtrain):指算法在训练数据集上无法正确转录的音频片段的百分比。在这个例子中,训练误差是10.8%,意味着算法在训练数据上犯了10.8%的错误。交叉验证误差(Jcv):指算法在未见过的数据(交叉验证集)上无法正确转录的
- 阿里云视频点播,基于thinkphp8上传视频
quweiie
php阿里云音视频云计算
前端参考官方示例(jQuery版)阿里云JavaScript上传SDKDemo(使用jquery).container{width:1200px;margin:0auto;}.input-control{margin:5px0;}.input-controllabel{font-size:14px;color:#333;width:30%;text-align:right;display:inli
- WEB安全--SQL注入--POST传参注入、SQL头部注入
神经毒素
web安全sql安全
一、介绍:post传参和get传参对注入方式没有本质上的影响,只不过前者是通过页面上的表单提交数据后者是通过url传参。而头部注入是因为后端并没有直接将参数插入查询语句,而是通过插入或取出cookie、referer等参数进行数据查询或更改的;所以通常使用抓包工具在抓到的数据包上更改相应的参数进行注入。二、示例:2.1、POST示例:#less-17username和password是两个传入点,
- 第二章:12.4 学习曲线
望云山190
深度学习机器学习人工智能
学习曲线的基本概念学习曲线是展示机器学习模型性能如何随着训练数据量增加而变化的图表。它们可以帮助我们理解模型在不同数据量下的表现,以及模型是否过拟合或欠拟合。二阶模型的学习曲线交叉验证错误(Jcv):这条绿色曲线表示模型在未见过的数据上的表现。它反映了模型的泛化能力,即模型对新数据的预测能力。训练错误(Jtrain):这条红色曲线表示模型在训练数据上的表现。它反映了模型对训练数据的拟合程度。学习曲
- 从零开始:Django + MySQL + Vue 打造在线Demo下载平台
阮懿同
从零开始:Django+MySQL+Vue打造在线Demo下载平台【下载地址】DjangoMySQLVue从零开始打造在线Demo下载平台Django+MySQL+Vue从零开始打造在线Demo下载平台本仓库提供了一套完整的前后端实战项目源码,带你全面学习和掌握在Django后端框架和Vue前端框架下,如何协作开发并部署一个功能完备的在线Demo下载网站项目地址:https://gitcode.c
- 机器学习相关基础
星辰瑞云
机器学习
1.预备知识人工智能:用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。人工智能学科:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。2.日常生活中的机器学习:①称为RGB(由红色,绿色,蓝色组成),这种是欠拟合欠拟合和过拟合区别:•欠拟合(Underfitting):模型在训练数据上表现不佳,无法很好地捕捉数据中的规律。通
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo