C#封装YOLOv4算法进行目标检测
概述
YOLO: 是实现实时物体检测的系统,Darknet是基于YOLO的框架
采用C#语言对 YOLOv4 目标检测算法封装,将模型在实际应用系统中落地,实现模型在线远程调用。
环境准备
本章只讲解如何对YOLOv4封装进行详解,具体环境安装过程不做介绍
查看你的GPU计算能力是否支持 >= 3.0:【点击查看】
Windows运行要求
CMake >= 3.12: 【点击下载】
CUDA >= 10.0: 【点击下载】
OpenCV >= 2.4: 【点击下载】
cuDNN >= 7.0: 【点击下载】
Visual Studio 2017/2019: 【点击下载】
我所使用的环境
系统版本:Windows 10 专业版
显卡:GTX 1050 Ti
CMake版本:3.18.2
CUDA版本:10.1
OpenCV版本:4.4.0
cuDNN版本:10.1
MSVC 2017/2019: Visual Studio 2019
程序代码准备
源代码下载
使用Git
git clone https://github.com/AlexeyAB/darknet
cd darknet
代码结构
将YOLOv4编译为DLL
详细教程:【点击查看】,这个教程描述的很详细。
进入 darknet\build\darknet 目录,打开解决方案 yolo_cpp_dll.sln
设置Windows SDK版本和平台工具集为当前系统安装版本
设置Release和x64
然后执行以下操作:Build-> Build yolo_cpp_dll
已完成生成项目“yolo_cpp_dll.vcxproj”的操作。
========== 生成: 成功 1 个,失败 0 个,最新 0 个,跳过 0 个 ==========
在打包DLL的过程中可能遇到如下问题
C1041
无法打开程序数据库“D:\代码管理\C\darknet\build\darknet\x64\DLL_Release\vc142.pdb”;如果要将多个 CL.EXE 写入同一个 .PDB 文件,请使用 /FSyolo_cpp_dllC:\Users\administrator\AppData\Local\Temp\tmpxft_00005db0_00000000-6_dropout_layer_kernels.compute_75.cudafe1.cpp1
MSB3721
命令“"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin\nvcc.exe" -gencode=arch=compute_30,code=\"sm_30,compute_30\" -gencode=arch=compute_75,code=\"sm_75,compute_75\" --use-local-env -ccbin "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\HostX86\x64" -x cu -IC:\opencv\build\include -IC:\opencv_3.0\opencv\build\include -I..\..\include -I..\..\3rdparty\stb\include -I..\..\3rdparty\pthreads\include -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include" -I\include -I\include -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include" --keep-dir x64\Release -maxrregcount=0 --machine 64 --compile -cudart static -DCUDNN_HALF -DCUDNN -DGPU -DLIB_EXPORTS -D_TIMESPEC_DEFINED -D_SCL_SECURE_NO_WARNINGS -D_CRT_SECURE_NO_WARNINGS -DWIN32 -DNDEBUG -D_CONSOLE -D_LIB -D_WINDLL -D_MBCS -Xcompiler "/EHsc /W3 /nologo /O2 /Fdx64\DLL_Release\vc142.pdb /Zi /MD " -o x64\DLL_Release\dropout_layer_kernels.cu.obj "D:\darknet\src\dropout_layer_kernels.cu"”已退出,返回代码为 2。yolo_cpp_dllC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\MSBuild\Microsoft\VC\v160\BuildCustomizations\CUDA 10.1.targets757
解决方法
在VS 2019 工具》选项》项目和解决方案》生成并运行 中最大并行项目生成数设为 1
在VS 2019 项目-》属性-》配置属性-》常规 将Windows SDK版本设置为系统当前版本即可
封装YOLOv4编译后的DLL
1、进入 darknet\build\darknet\x64 目录,将 pthreadGC2.dll 和 pthreadVC2.dll 拷贝到项目 Dll 文件夹
2、将编译后的YOLOv4 DLL文件拷贝到项目 Dll 文件夹
3、进入 darknet\build\darknet\x64\cfg 目录,将 yolov4.cfg 拷贝到项目 Cfg 文件夹
4、进入 darknet\build\darknet\x64\data 目录,将 coco.names 拷贝到项目 Data 文件夹
5、下载 yolov4.weights 权重文件 拷贝到 Weights 文件夹,文件245 MB 【点击下载】
项目文件
YoloWrapper - YOLOv4封装项目
Cfg - 配置文件夹
Data - label文件夹
Dll - YOLOv4 编译后的DLL文件夹
Weights - YOLOv4 权重文件夹
BboxContainer.cs
BoundingBox.cs
YoloWrapper.cs - 封装主文件,调用 YOLOv4 的动态链接库
YoloWrapperConsole - 调用封装DLL控制台程序
Program.cs - 控制台主程序,调用 YOLOv4 封装文件
代码
YOLOv4封装项目
YoloWrapper.cs - 封装主文件,调用 YOLOv4 的动态链接库
using System;
using System.Runtime.InteropServices;
namespace YoloWrapper
{
public class YoloWrapper : IDisposable
{
private const string YoloLibraryName = @"\Dlls\yolo_cpp_dll.dll";
[DllImport(YoloLibraryName, EntryPoint = "init")]
private static extern int InitializeYolo(string configurationFilename, string weightsFilename, int gpu);
[DllImport(YoloLibraryName, EntryPoint = "detect_image")]
private static extern int DetectImage(string filename, ref BboxContainer container);
[DllImport(YoloLibraryName, EntryPoint = "detect_mat")]
private static extern int DetectImage(IntPtr pArray, int nSize, ref BboxContainer container);
[DllImport(YoloLibraryName, EntryPoint = "dispose")]
private static extern int DisposeYolo();
public YoloWrapper(string configurationFilename, string weightsFilename, int gpu)
{
InitializeYolo(configurationFilename, weightsFilename, gpu);
}
public void Dispose()
{
DisposeYolo();
}
public BoundingBox[] Detect(string filename)
{
var container = new BboxContainer();
var count = DetectImage(filename, ref container);
return container.candidates;
}
public BoundingBox[] Detect(byte[] imageData)
{
var container = new BboxContainer();
var size = Marshal.SizeOf(imageData[0]) * imageData.Length;
var pnt = Marshal.AllocHGlobal(size);
try
{
Marshal.Copy(imageData, 0, pnt, imageData.Length);
var count = DetectImage(pnt, imageData.Length, ref container);
if (count == -1)
{
throw new NotSupportedException($"{YoloLibraryName} has no OpenCV support");
}
}
catch (Exception exception)
{
return null;
}
finally
{
Marshal.FreeHGlobal(pnt);
}
return container.candidates;
}
}
}
BboxContainer.cs
using System.Runtime.InteropServices;
namespace YoloWrapper
{
[StructLayout(LayoutKind.Sequential)]
public struct BboxContainer
{
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 1000)]
public BoundingBox[] candidates;
}
}
BoundingBox.cs
using System;
using System.Runtime.InteropServices;
namespace YoloWrapper
{
[StructLayout(LayoutKind.Sequential)]
public struct BoundingBox
{
public UInt32 x, y, w, h;
public float prob;
public UInt32 obj_id;
public UInt32 track_id;
public UInt32 frames_counter;
public float x_3d, y_3d, z_3d;
}
}
调用封装DLL控制台程序
BoundingBox.cs
using ConsoleTables;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using YoloWrapper;
namespace YoloWrapperConsole
{
class Program
{
private const string configurationFilename = @".\Cfg\yolov4.cfg";
private const string weightsFilename = @".\Weights\yolov4.weights";
private const string namesFile = @".\Data\coco.names";
private static Dictionary _namesDic = new Dictionary();
private static YoloWrapper.YoloWrapper _wrapper;
static void Main(string[] args)
{
Initilize();
Console.Write("ImagePath:");
string imagePath = Console.ReadLine();
var bbox = _wrapper.Detect(imagePath);
Convert(bbox);
Console.ReadKey();
}
private static void Initilize()
{
_wrapper = new YoloWrapper.YoloWrapper(configurationFilename, weightsFilename, 0);
var lines = File.ReadAllLines(namesFile);
for (var i = 0; i < lines.Length; i++)
_namesDic.Add(i, lines[i]);
}
private static void Convert(BoundingBox[] bbox)
{
Console.WriteLine("Result:");
var table = new ConsoleTable("Type", "Confidence", "X", "Y", "Width", "Height");
foreach (var item in bbox.Where(o => o.h > 0 || o.w > 0))
{
var type = _namesDic[(int)item.obj_id];
table.AddRow(type, item.prob, item.x, item.y, item.w, item.h);
}
table.Write(Format.MarkDown);
}
}
}
测试返回结果
Type
Confidence
X
Y
Width
Height
mouse
0.25446844
1206
633
78
30
laptop
0.5488589
907
451
126
148
laptop
0.51734066
688
455
53
37
laptop
0.48207012
980
423
113
99
person
0.58085686
429
293
241
469
bottle
0.22032459
796
481
43
48
bottle
0.24873751
659
491
32
53
cup
0.5715177
868
453
55
70
bottle
0.29916075
1264
459
31
89
cup
0.2782725
685
503
35
40
cup
0.28154427
740
539
78
44
person
0.94347733
81
199
541
880
person
0.9496539
1187
368
233
155
chair
0.22458112
624
442
45
48
person
0.97528315
655
389
86
100
bottle
0.9407686
1331
436
33
107
bottle
0.9561032
1293
434
37
113
chair
0.4784215
1
347
386
730
cup
0.8945817
822
586
112
69
cup
0.6422996
1265
472
31
72
laptop
0.9833646
802
700
639
216
cup
0.9216428
828
521
115
71
chair
0.88087356
1124
416
111
70
diningtable
0.3222557
531
585
951
472
控制台