python如何训练图片_python 画图像训练结果的loss图

得到每个epoch的loss和predict精度后,就可以愉快地画图直观地看出训练结果和收敛性了。

# coding:utf-8

import matplotlib.pyplot as plt

data_dir = "D:\\result.txt"

Train_Loss_list = []

Train_Accuracy_list = []

Valid_Loss_list = []

Valid_Accuracy_list = []

f1 = open(data_dir,'r')

data = []

#把训练结果输出到result.txt里,比较笨的办法,按字节位数去取数字结果

for line in f1:

if(line.find('train')>=0):

# if (string.find(line, 'train') != -1):

Train_Loss_list.append(line[12:18])

Train_Accuracy_list.append(line[24:30])

if (line.find('valid') >= 0):

# if (string.find(line, 'valid') != -1):

Valid_Loss_list.append(line[12:18])

Valid_Accuracy_list.append(line[24:30])

f1.close()

#迭代了30次,所以x的取值范围为(0,30),然后再将每次相对应的准确率以及损失率附在x上

x1 = range(0, 30)

x2 = range(0, 30)

y1 = Train_Accuracy_list

y2 = Train_Loss_list

y3 = Valid_Accuracy_list

y4 = Valid_Loss_list

plt.subplot(2, 1, 1)

# plt.plot(x1, y1, 'o-',color='r')

plt.plot(x1, y1, 'o-',label="Train_Accuracy")

plt.plot(x1, y3, 'o-',label="Valid_Accuracy")

plt.title('Test accuracy vs. epoches')

plt.ylabel('Test accuracy')

plt.legend(loc='best')

plt.subplot(2, 1, 2)

plt.plot(x2, y2, '.-',label="Train_Loss")

plt.plot(x2, y4, '.-',label="Valid_Loss")

plt.xlabel('Test loss vs. epoches')

plt.ylabel('Test loss')

plt.legend(loc='best')

plt.show()

476776-20190602143944528-261524783.png

476776-20190602144004370-1510397223.png

你可能感兴趣的:(python如何训练图片)