直接上代码,测试无误。
bool Equal(float f1, float f2)
{
return (Math.Abs(f1 - f2) < 1f);
}
bool dayu(Point p1, Point p2)比较两点坐标大小,先比较x坐标,若相同则比较y坐标
{
return (p1.X > p2.X || (Equal(p1.X , p2.X) && p1.Y > p2.Y));
}
bool dengyu(Point p1, Point p2)判断两点是否相等
{
return (Equal(p1.X, p2.X) && Equal(p1.Y, p2.Y));
}
float ji(Point p1, Point p2)计算两向量外积
{
return (p1.X * p2.Y - p1.Y * p2.X);
}
//判定两线段位置关系,并求出交点(如果存在)。返回值列举如下:
//[有重合] 完全重合(6),1个端点重合且共线(5),部分重合(4)
//[无重合] 两端点相交(3),交于线上(2),正交(1),无交(0),参数错误(-1)
int Intersection(Point p1, Point p2, Point p3, Point p4, ref Point point) {
//保证参数p1!=p2,p3!=p4
if (p1 == p2 || p3 == p4) {
return -1; //返回-1代表至少有一条线段首尾重合,不能构成线段
}
//为方便运算,保证各线段的起点在前,终点在后。
if (dayu(p1,p2))
{
Point pTemp = p1;
p1 = p2;
p2 = pTemp;
// swap(p1, p2);
}
if (dayu(p3, p4)) {
Point pTemp = p3;
p3 = p4;
p4 = pTemp;
//swap(p3, p4);
}
//判定两线段是否完全重合
if (p1 == p3 && p2 == p4) {
return 6;
}
//求出两线段构成的向量
Point v1 = new Point(p2.X - p1.X, p2.Y - p1.Y), v2 = new Point(p4.X - p3.X, p4.Y - p3.Y);
//求两向量外积,平行时外积为0
float Corss = ji(v1, v2);
//如果起点重合
if (dengyu(p1,p3))
{
point = p1;
//起点重合且共线(平行)返回5;不平行则交于端点,返回3
return (Equal(Corss, 0) ? 5 : 3);
}
//如果终点重合
if (dengyu(p2,p4)) {
point = p2;
//终点重合且共线(平行)返回5;不平行则交于端点,返回3
return (Equal(Corss, 0) ? 5 : 3);
}
//如果两线端首尾相连
if (dengyu(p1,p4)) {
point = p1;
return 3;
}
if (dengyu(p2, p3)) {
point = p2;
return 3;
}//经过以上判断,首尾点相重的情况都被排除了
//将线段按起点坐标排序。若线段1的起点较大,则将两线段交换
if(dayu(p1,p3))
{
Point pTemp = p1;
p1 = p3;
p3 = pTemp;
pTemp = p2;
p2 = p4;
p4 = pTemp;
pTemp = v1;
v1 = v2;
v2 = pTemp;
//swap(p1, p3);
//swap(p2, p4);
//更新原先计算的向量及其外积
//swap(v1, v2);
Corss= ji(v1, v2);
}
//处理两线段平行的情况
if(Equal(Corss,0)){
//做向量v1(p1, p2)和vs(p1,p3)的外积,判定是否共线
Point vs =newPoint(p3.X - p1.X, p3.Y - p1.Y);
//外积为0则两平行线段共线,下面判定是否有重合部分
if(Equal(ji(v1, vs),0)){
//前一条线的终点大于后一条线的起点,则判定存在重合
if(dayu(p2, p3)){
point = p3;
return4;//返回值4代表线段部分重合
}
}//若三点不共线,则这两条平行线段必不共线。
//不共线或共线但无重合的平行线均无交点
return0;
}//以下为不平行的情况,先进行快速排斥试验
//x坐标已有序,可直接比较。y坐标要先求两线段的最大和最小值
float ymax1 = p1.Y, ymin1 = p2.Y, ymax2 = p3.Y, ymin2 = p4.Y;
if(ymax1 < ymin1){
float fTemp = ymax1;
ymax1 = ymin1;
ymin1 = fTemp;
//swap(ymax1, ymin1);
}
if(ymax2 < ymin2){
//swap(ymax2, ymin2);
float fTemp = ymax2;
ymax2 = ymin2;
ymin2 = fTemp;
}
//如果以两线段为对角线的矩形不相交,则无交点
if(p1.X > p4.X || p2.X < p3.X || ymax1 < ymin2 || ymin1 > ymax2)
{
return0;
}//下面进行跨立试验
Point vs1 =newPoint(p1.X - p3.X, p1.Y - p3.Y), vs2 =newPoint(p2.X - p3.X, p2.Y - p3.Y);
Point vt1 =newPoint(p3.X - p1.X, p3.Y - p1.Y), vt2 =newPoint(p4.X - p1.X, p4.Y - p1.Y);
float s1v2, s2v2, t1v1, t2v1;
//根据外积结果判定否交于线上
if(Equal(s1v2 = ji(vs1, v2),0)&& dayu(p4, p1)&& dayu(p1, p3)){
point = p1;
return2;
}
if(Equal(s2v2 = ji(vs2 ,v2),0)&& dayu(p4 ,p2)&& dayu(p2 , p3)){
point = p2;
return2;
}
if(Equal(t1v1 = ji(vt1 , v1),0)&& dayu(p2 , p3)&& dayu(p3, p1)){
point = p3;
return2;
}
if(Equal(t2v1 = ji(vt2 , v1),0)&& dayu(p2 , p4)&& dayu(p4 , p1)){
point = p4;
return2;
}//未交于线上,则判定是否相交
if(s1v2 * s2v2 >0|| t1v1 * t2v1 >0){
return0;
}//以下为相交的情况,算法详见文档
//计算二阶行列式的两个常数项
floatConA= p1.X * v1.Y - p1.Y * v1.X;
floatConB= p3.X * v2.Y - p3.Y * v2.X;
//计算行列式D1和D2的值,除以系数行列式的值,得到交点坐标
point.X =(int)((ConB* v1.X -ConA* v2.X)/Corss);
point.Y =(int)((ConB* v1.Y -ConA* v2.Y)/Corss);
//正交返回1
return1;
}