14天阅读挑战赛
努力是为了不平庸~
算法学习有些时候是枯燥的,这一次,让我们先人一步,趣学算法!欢迎记录下你的那些努力时刻(算法学习知识点/算法题解/遇到的算法bug/等等),在分享的同时加深对于算法的理解,同时吸收他人的奇思妙想,一起见证技术er的成长~
假设第1个月有1对初生的兔子,第2个月进入成熟期,第3个月开始生育兔子,而1对成熟的兔子每月会生1对兔子,兔子永不死去……那么,由1对初生的兔子开始,12个月后会有多少对兔子呢?
兔子数列即 斐波那契数列 ,它的发明者是意大利数学家莱奥纳尔多·斐波那契(Leonardo Fibonacci,1170—1250)。1202年,莱奥纳尔多撰写了《算盘全书》(Liber Abaci),该书是一部较全面的初等数学著作。书中系统地介绍了印度—阿拉伯数码及其演算法则,以及中国的“盈不足术”;此外还引入了负数,并研究了一些简单的一次同余式组。
这个数列有如下十分明显的特点:从第3个月开始,当月的兔子数=上月兔子数+当月新生兔子数,而当月新生兔子数正好等于上上月的兔子数。因此,前面相邻两项之和便构成后一项,换言之:
当月的兔子数 = 上月兔子数 + 上上月的兔子数
斐波那契数列如下:
1,1,2,3,5,8,13,21,34,…
递归表达式如下:
打印前20行
function fn() {
const fi = []; //---1
fi[1] = 1; //---2
fi[2] = 1; //---3
for (let i = 3; i < 20; i++) {
fi[i] = fi[i - 1] + fi[i - 2]; //---4
}
for (let i = 0; i < fi.length; i++) { //---5
console.log(fi[i]); //---6
}
}
function fibonacci(n) {
let current = 1;
let next = 1;
for(let i = 0; i < n; i++){
[current, next] = [next, current + next];
}
return current;
}
function fibonacci(n) {
const SQRT_FIVE = Math.sqrt(5);
return Math.round(1/SQRT_FIVE * (Math.pow(0.5 + SQRT_FIVE/2, n) - Math.pow(0.5 - SQRT_FIVE/2, n)));
}
希望本文对你有一点点帮助,如果有用请点个赞吧 ~