数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,表示为X × Y,是其第一个对象是X的成员而第二个对象是Y的一个成员的所有可能的有序对。
假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。
类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。
Union:
• For sets A and B:
• written A ∪ B,
• elements that are in A, or B, or both,
• A ∪ B = { x : x ∈ A or x ∈ B }.
• So that:
• (x ∈ A ∪ B) ⇔ (x ∈ A) ∨ (x ∈ B).
Intersection:
• For sets A and B:
• written A ∩ B,
• elements that are in both A and B,
• A ∩ B = { x : x ∈ A and x ∈ B }.
• So that:
• (x ∈ A ∩ B) ⇔ (x ∈ A) ∧ (x ∈ B);
• Two sets A and B are disjoint if they have
no elements in common:
• A ∩ B = ∅.
Difference operator:
• For sets A and B:
• A \ B denotes
• elements that are in A but not in B,
• A \ B = { x ∈ A : x ∉ B }.
• So that:
• (x ∈ A \ B) ⇔ (x ∈ A) ∧ (x ∉ B)
Powerset:
• For a set A:
• written P(A),
• Elements of the powerset are the subsets of A,
• P(A) = { X : X ⊆ A }.
• So that:
• (Y ∈ P (A)) ⇔ (Y ⊆ A), and
• ∅ ∈ P (A), and
• A ∈ P (A).
Ordered Pairs:
• Pairs of first and second objects,
• eg:co-ordinates (x, y) of points in a plane,
• ordering means that (a, b) = (b, a) ⇒ a = b.
• Cartesian Product:
• For sets A and B:
• written A x B,
• ordered pairs of elements from A and B,
• A x B = { (a, b) : a ∈ A and b ∈ B }.
Generalisations to many sets:
• Union:
• eg A ∪ B ∪ C, or ∪F ;
• Intersection:
• eg A ∩ B ∩ C, or ∩ F ;
• Because ∪ and ∩ are associative;
• Cartesian product:
• eg A x B x C
= { (a, b, c) : a ∈ A ∧ b ∈ B ∧ c ∈ C }.