河北工业大学数据挖掘实验四 贝叶斯决策分类算法

贝叶斯决策分类算法

  • 一、实验目的
  • 二、实验原理
    • 1、先验概率和类条件概率
    • 2、贝叶斯决策
  • 三、实验内容和步骤
    • 1、实验内容
    • 2、实验步骤
    • 3、程序框图
    • 4、实验样本
    • 5、实验代码
  • 四、实验结果
  • 五、实验分析

一、实验目的

(1)熟悉朴素贝叶斯决策算法。
(2)对 AllElectronics 顾客数据库查询得到先验概率和类条件概率。
(3)在样本集上编写用朴素贝叶斯算法分类的程序,对任务相关数据运行朴素贝叶斯分类算法,调试实验。
(4)写出实验报告。

二、实验原理

1、先验概率和类条件概率

先验概率:先验概率定义为训练样本集中属于 C i C_i Ci类的样本(元组)数与总样本数 N i N_i Ni之比,记为 P ( C i ) = N i N P(C_i)=\frac{N_i}{N} P(Ci)=NNi
类条件概率:类条件概率定义为训练样本集中属于 C i C_i Ci类中的具有特征 X X X的样本(元组)的个数 n i n_i ni与属于 C i C_i Ci类的样本(元组)数 N i N_i Ni之比,记为 P ( X ∣ C i ) = n i N i P(X|C_i)=\frac{n_i}{N_i} P(XCi)=Nini

2、贝叶斯决策

贝叶斯决策(分类)法将样本(元组)分到 C i C_i Ci类,当且仅当
P ( X ∣ C i ) P ( C i ) > P ( X ∣ C j ) P ( C j ) , 对 1 ≤ j ≤ m , j ≠ i P(X|C_i)P(C_i)>P(X|C_j)P(C_j), 对1\leq j\leq m, j\neq i P(XCi)P(Ci)>P(XCj)P(Cj),1jm,j=i
其中,训练样本集中的样本(元组)可被分为 m m m类。

三、实验内容和步骤

1、实验内容

用贝叶斯分类器对已知的特征向量 X 分类:

  1. 由 AllElectronics 顾客数据库类标记的训练样本集(元组)编程计算先验
    概率 P(Ci)和类条件概率 P(X|Ci),并在实验报告中指出关键代码的功能和实现方法;
  2. 应用贝叶斯分类法编程对特征向量 X 分类,并在实验报告中指出关键程
    序片段的功能和实现方法;
  3. 用检验样本估计分类错误率;
  4. 在实验报告中画出程序或例程的程序框图。

2、实验步骤

由于该分类问题是决定顾客是否倾向于购买计算机,即C1对应于buys_computer=yes,C2对应于 buys_computer=no,是两类的分类问题。实验步骤如下:

  1. 确定特征属性及划分:浏览所给的数据库,找出划分的特征属性;
  2. 获取训练样本:即给定的 AllElectronics 顾客数据库类标记的训练样本集
    (元组);
  3. 计算训练样本中每个类别的先验概率:P(Ci),i=1,2;
  4. 计算训练样本中类条件概率:设特征(属性)向量为 X,编程计算类条
    件概率 P(X|Ci),i=1,2;
  5. 使用分类器进行分类;

3、程序框图

河北工业大学数据挖掘实验四 贝叶斯决策分类算法_第1张图片

4、实验样本

data.txt
河北工业大学数据挖掘实验四 贝叶斯决策分类算法_第2张图片

5、实验代码

#!/usr/bin/env python  
# -*- coding: utf-8 -*-
#
# Copyright (C) 2021 #
# @Time    : 2022/5/30 21:26
# @Author  : Yang Haoyuan
# @Email   : [email protected]
# @File    : Exp4.py
# @Software: PyCharm

import pandas as pd
import numpy as np
from sklearn.model_selection import KFold
import argparse

parser = argparse.ArgumentParser(description='Exp4')
parser.add_argument('--mode', type=str, choices=["KFold", "train", "test"])
parser.add_argument('--k', type=int, default=7)
parser.add_argument('--AGE', type=str, choices=["youth", "middle_aged", "senior"])
parser.add_argument('--INCOME', type=str, choices=["high", "medium", "low"])
parser.add_argument('--STUDENT', type=str, choices=["yes", "no"])
parser.add_argument('--CREDIT', type=str, choices=["excellent", "fair"], default="fair")
parser.set_defaults(augment=True)
args = parser.parse_args()
print(args)


# 载入数据集
def loadDataset(filename):
    dataSet = []
    with open(filename, 'r') as file_to_read:
        while True:
            lines = file_to_read.readline()  # 整行读取数据
            if not lines:
                break
            p_tmp = [str(i) for i in lines.split(sep="\t")]
            p_tmp[len(p_tmp) - 1] = p_tmp[len(p_tmp) - 1].strip("\n")
            dataSet.append(p_tmp)

    return pd.DataFrame(dataSet, columns=["AGE", "INCOME", "STUDENT", "CREDIT", "BUY"])


# 计算总样本数和各类数量
def count_total(data):
    count = {}
    group_df = data.groupby(["BUY"])

    count["yes"] = group_df.size()["yes"]
    count["no"] = group_df.size()["no"]

    total = count["yes"] + count["no"]
    return count, total


# 计算各类概率
def cal_base_rates(categories, total):
    rates = {}
    for label in categories:
        priori_prob = categories[label] / total
        rates[label] = priori_prob
    return rates


# 计算各类条件概率
def f_prob(data, count):
    likelihood = {'yes': {}, 'no': {}}

    # 根据AGE(youth, middle_aged, senior)和BUY(yes, no)统计概率
    df_group = data.groupby(['AGE', 'BUY'])
    try:
        c = df_group.size()["youth", "yes"]
    except:
        c = 0
    likelihood['yes']['youth'] = c / count['yes']

    try:
        c = df_group.size()["youth", "no"]
    except:
        c = 0
    likelihood['no']['youth'] = c / count['no']

    try:
        c = df_group.size()["middle_aged", "yes"]
    except:
        c = 0
    likelihood['yes']['middle_aged'] = c / count['yes']

    try:
        c = df_group.size()["middle_aged", "no"]
    except:
        c = 0
    likelihood['no']['middle_aged'] = c / count['no']

    try:
        c = df_group.size()["senior", "yes"]
    except:
        c = 0
    likelihood['yes']['senior'] = c / count['yes']

    try:
        c = df_group.size()["senior", "no"]
    except:
        c = 0
    likelihood['no']['senior'] = c / count['no']

    # 根据INCOME(high, medium, low)和BUY(yes, no)统计概率
    df_group = data.groupby(['INCOME', 'BUY'])
    try:
        c = df_group.size()["high", "yes"]
    except:
        c = 0
    likelihood['yes']['high'] = c / count['yes']

    try:
        c = df_group.size()["high", "no"]
    except:
        c = 0
    likelihood['no']['high'] = c / count['no']

    try:
        c = df_group.size()["medium", "yes"]
    except:
        c = 0
    likelihood['yes']['medium'] = c / count['yes']

    try:
        c = df_group.size()["medium", "no"]
    except:
        c = 0
    likelihood['no']['medium'] = c / count['no']

    try:
        c = df_group.size()["low", "yes"]
    except:
        c = 0
    likelihood['yes']['low'] = c / count['yes']

    try:
        c = df_group.size()["low", "no"]
    except:
        c = 0
    likelihood['no']['low'] = c / count['no']

    # 根据STUDENT(yes, no)和BUY(yes, no)统计概率
    df_group = data.groupby(['STUDENT', 'BUY'])
    try:
        c = df_group.size()["yes", "yes"]
    except:
        c = 0
    likelihood['yes']['yes'] = c / count['yes']

    try:
        c = df_group.size()["yes", "no"]
    except:
        c = 0
    likelihood['no']['yes'] = c / count['no']

    try:
        c = df_group.size()["no", "yes"]
    except:
        c = 0
    likelihood['yes']['no'] = c / count['yes']

    try:
        c = df_group.size()["no", "no"]
    except:
        c = 0
    likelihood['no']['no'] = c / count['no']

    # 根据CREDIT(excellent, fair)和BUY(yes, no)统计概率
    df_group = data.groupby(['CREDIT', 'BUY'])
    try:
        c = df_group.size()["excellent", "yes"]
    except:
        c = 0
    likelihood['yes']['excellent'] = c / count['yes']

    try:
        c = df_group.size()["excellent", "no"]
    except:
        c = 0
    likelihood['no']['excellent'] = c / count['no']

    try:
        c = df_group.size()["fair", "yes"]
    except:
        c = 0
    likelihood['yes']['fair'] = c / count['yes']

    try:
        c = df_group.size()["fair", "no"]
    except:
        c = 0
    likelihood['no']['fair'] = c / count['no']

    return likelihood


# 训练
def train(train_data):
    # 获取各类数量和训练样本总数
    count, total = count_total(train_data)
    # 获取先验概率
    priori_prob = cal_base_rates(count, total)
    # 保存先验概率
    np.save("priori_prob.npy", priori_prob)
    # 获取各特征的条件概率
    feature_prob = f_prob(train_data, count)
    # 保存条件概率
    np.save("feature_prob.npy", feature_prob)
    print("训练完成")


# 分类器
def NaiveBayesClassifier(AGE=None, INCOME=None, STUDENT=None, CREDIT=None):
    res = {}
    priori_prob = np.load('priori_prob.npy', allow_pickle=True).item()
    feature_prob = np.load('feature_prob.npy', allow_pickle=True).item()
    # 根据特征计算各类的概率
    for label in ['yes', 'no']:
        prob = priori_prob[label]
        prob *= feature_prob[label][AGE] * feature_prob[label][INCOME] * feature_prob[label][STUDENT] \
                * feature_prob[label][CREDIT]
        res[label] = prob
    print("预测概率:", res)
    # 选择概率最高的类作为分类结果
    res = sorted(res.items(), key=lambda kv: kv[1], reverse=True)
    return res[0][0]


# 测试
def test(test_data):
    correct = 0
    for idx, row in test_data.iterrows():
        prob = NaiveBayesClassifier(row["AGE"], row["INCOME"], row["STUDENT"], row["CREDIT"])
        if prob == row["BUY"]:
            correct = correct + 1
    return correct / test_data.shape[0]


# 启用k-折交叉验证
def KFoldEnabled():
    kf = KFold(n_splits=args.k)
    data_set = loadDataset("date.txt")
    corr = 0
    for train_idx, test_idx in kf.split(data_set):
        train_data = data_set.loc[train_idx]
        test_data = data_set.loc[test_idx]
        train(train_data)
        corr = corr + test(test_data)

    print("k折交叉验证正确率: ", corr / 7)


if __name__ == '__main__':
    if args.mode == "KFold":
        KFoldEnabled()
    if args.mode == "train":
        train_data = loadDataset("date.txt")
        train(train_data)
    if args.mode == "test":
        '''priori_prob = np.load('priori_prob.npy', allow_pickle=True).item()
        print("先验概率: ", priori_prob)
        feature_prob = np.load('feature_prob.npy', allow_pickle=True).item()
        print("类条件概率: ", feature_prob)'''
        ret = NaiveBayesClassifier(args.AGE, args.INCOME, args.STUDENT, args.CREDIT)
        print("预测结果: ", ret)

四、实验结果

河北工业大学数据挖掘实验四 贝叶斯决策分类算法_第3张图片
采用k折交叉验证进行训练和测试,k=7
在这里插入图片描述
训练模型
在这里插入图片描述
模型预测

五、实验分析

本次实验主要实现朴素贝叶斯分类算法。

贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主观偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。
朴素贝叶斯算法(Naive Bayesian algorithm) 在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时属性之间相互条件独立。也就是说没有哪个属性变量对于决策结果来说占有着较大的比重,也没有哪个属性变量对于决策结果占有着较小的比重。虽然这个简化方式在一定程度上降低了贝叶斯分类算法的分类效果,但是在实际的应用场景中,极大地简化了贝叶斯方法的复杂性。

这增强了朴素贝叶斯分类的鲁棒性,但是实际上,其对于属性间互相独立的假设也限制了其分类的性能。

本实验数据中并没有区分训练集和验证集,为了验证朴素贝叶斯分类器在该数据集上的性能,我采用K折交叉验证算法。最后的分类正确率只有50%,我认为这可以归咎于数据集的数量过少,导致朴素贝叶斯分类器在该任务上没有充分训练。

我将训练的数据以.npy的文件保存下来,以便在应用分类的时候直接读取参数,进行分类。

你可能感兴趣的:(数据挖掘,分类,机器学习,python,算法)