决策树的ID3算法
模式识别课程第二组课题是熟悉和掌握决策树的分类原理、实质和过程,掌握决策树典型算法(ID3、C4.5、CART)的核心思想和实现过程。
我的主要任务是对决策树的ID3算法的部分进行PPT制作以及算法讲解,主要介绍ID3算法的简介,算法原理,案例分析。
ID3算法核心是“信息熵”,在创建决策树的过程中,依次查询样本集合中的每个属性,选取出具有最大信息增益值的属性,将该属性作为测试属性与划分标准。通过该标准将原始数据集合划分成多个更纯的子集,并在每个子集中重复这个过程,直到分支子集中的所有样本无法继续分割,即样例属性属于同一类别,此时一棵决策树便创建完成。
1信息熵
信息熵又叫香农熵,是1948年美国数学家香农把热力学的熵引入到信息论。信息熵代表的是属性类别的不纯性度量,熵值越高属性的纯度越低。
决策树算法中log使用以2为低,对于随机变量X,以一定的概率p(xi)取值为xi,当计算随机变量X的自发信息量时,由于不知道X的具体取值,要考虑到所有X取到每一个xi的情况,而对于每一个xi的自信息量是可以计算的。
2条件熵
条件熵描述在随机变量X的值已知的前提下,随机变量Y的不确定程度,表示为H(Y|X)。若H(Y|X=x)表示变量Y在变量X取特定值x条件下的熵,那么H(Y|X)就是X在取所有的x后取平均的结果。即:
条件熵可以描述在某个随机变量确定的情况下,另一个随机变量的不确定程度。
3信息增益
信息增益:通过信息熵相减求得,它反映了该属性特征在总体数据集中的重要程度,用Gain(Y,X) 表示。指在随机变量X确定条件下,随机变量Y的熵值较没有任何条件确定时减少了多少。计算公式如下:
ID3算法是一个从模糊到清晰,不确定程度越来越小的过程。在决策树构造中呢,最重要的步骤就是决策树节点属性的选择,在决策树的结点划分之前,先计算每一个属性所带来的信息增益,选择最大信息增益的属性来划分,因为信息增益越大,区分样本的能力就越强,越具有代表性,这就是ID3算法的核心。
1.3 ID3算法优缺点
ID3算法是一种采用自顶向下,贪婪策略的算法。
1优点:
(1)自顶向下的搜索方式降 低了搜索次数,提升了分类速度;
(2)ID3算法原理清晰,算法思路简单易懂,易于实现;
(3)由于决策树在创建的过程中都使用目前的训练样本,而不是根据独立的训练样本递增的做出判断,在很大程度上降低了对个别训练样本错误的敏感性。
2缺点:
(1)ID3算法对噪声数据相对敏感;
(2)ID3 算法循环调用过程中会产生大量的对数运算,随着样本集合、属性以及属性取值个数的增加,对数运算次数将会大大增加,从而降低了ID3算法的运算效率,产生了极大的时间开销;
(3)ID3算法在建树过程中不进 行回溯导致生成的决策树节点只是局部最优的,相对于全局,往往不是我们所期待的结果,即如多值偏向所得结果并不总是最优结果;
(4)ID3只能分类离散型 数据,对于非离散型数据需要经过预处理才能使用。
1.4 实例分析
下表是一个由15个样本组成的贷款申请训练数据。用随机变量Y表示类别,表示能否贷款成功。
数据包括贷款申请人的4个特征:
第1个特征是年龄,用A表示,有三个可能值:青年,中年,老年;
第2个特征是有工作,用W表示,有2个可能值:是,否;
第3个特征是有自己的房子,用R表示,有两个可能值:是,否;
第4个特征是信贷情况,用C表示,有3个可能值:非常好,好,一般。
根节点包含的样本:所有样本;
1 根节点信息熵:
式中15是样本总数 log都是以2为低 6是不能贷款的人数 9是能贷款的人数,通过计算可知信息熵H(Y)=0.97。
分别计算各个特征的条件熵 分别为年龄的条件熵Y(Y|A), 是否有工作的条件熵Y(Y|W), 是否有房子的条件熵Y(Y|W),信贷情况各个的条件熵Y(Y|C)。
当分支特征为(就是是否有房子)时带来的信息增益最大g(Y,R)=0.42,因此根节点的分支特征选择为是否有房子,分支分为左右两支,右边为有房子,左边为没有房子的样本,之后再在没有房子中看是否有工作 以此类推构建出决策树模型。
4 每个节点的分支过程可以分为以下几步:
(1)确定当前节点的信息熵以及各个特征的条件熵
(2)计算各个特征的信息增益
(3)确定当前节点的分支特征
1.5 主要程序代码
from math import log
import operator
"""
函数说明:创建测试数据集
"""
def createDataSet():
dataSet = [[0, 0, 0, 0, 'no'], # 数据集
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
labels = ['年龄', '有工作', '有自己的房子', '信贷情况'] # 分类属性
return dataSet, labels # 返回数据集和分类属性
"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
dataSet - 数据集
Returns:
shannonEnt - 经验熵(香农熵)
"""
def calcShannonEnt(dataSet):
numEntires = len(dataSet) # 返回数据集的行数
labelCounts = {} # 保存每个标签(Label)出现次数的字典
for featVec in dataSet: # 对每组特征向量进行统计
currentLabel = featVec[-1] # 提取标签(Label)信息
if currentLabel not in labelCounts.keys(): # 如果标签(Label)没有放入统计次数的字典,添加进去
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 # Label计数
shannonEnt = 0.0 # 经验熵(香农熵)
for key in labelCounts: # 计算香农熵
prob = float(labelCounts[key]) / numEntires # 选择该标签(Label)的概率
shannonEnt -= prob * log(prob, 2) # 利用公式计算
return shannonEnt # 返回经验熵(香农熵)
"""
函数说明:按照给定特征划分数据集
Parameters:
dataSet - 待划分的数据集
axis - 划分数据集的特征
value - 需要返回的特征的值
"""
def splitDataSet(dataSet, axis, value):
retDataSet = [] # 创建返回的数据集列表
for featVec in dataSet: # 遍历数据集
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] # 去掉axis特征
reducedFeatVec.extend(featVec[axis + 1:]) # 将符合条件的添加到返回的数据集
retDataSet.append(reducedFeatVec)
return retDataSet # 返回划分后的数据集
"""
函数说明:选择最优特征
Parameters:
dataSet - 数据集
Returns:
bestFeature - 信息增益最大的(最优)特征的索引值
"""
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 # 特征数量
baseEntropy = calcShannonEnt(dataSet) # 计算数据集的香农熵
bestInfoGain = 0.0 # 信息增益
bestFeature = -1 # 最优特征的索引值
for i in range(numFeatures): # 遍历所有特征
# 获取dataSet的第i个所有特征
featList = [example[i] for example in dataSet]
uniqueVals = set(featList) # 创建set集合{},元素不可重复
newEntropy = 0.0 # 经验条件熵
for value in uniqueVals: # 计算信息增益
subDataSet = splitDataSet(dataSet, i, value) # subDataSet划分后的子集
prob = len(subDataSet) / float(len(dataSet)) # 计算子集的概率
newEntropy += prob * calcShannonEnt(subDataSet) # 根据公式计算经验条件熵
infoGain = baseEntropy - newEntropy # 信息增益
print("第%d个特征的增益为%.3f" % (i, infoGain)) # 打印每个特征的信息增益
if (infoGain > bestInfoGain): # 计算信息增益
bestInfoGain = infoGain # 更新信息增益,找到最大的信息增益
bestFeature = i # 记录信息增益最大的特征的索引值
return bestFeature # 返回信息增益最大的特征的索引值
"""
函数说明:统计classList中出现此处最多的元素(类标签)
Parameters:
classList - 类标签列表
Returns:
sortedClassCount[0][0] - 出现此处最多的元素(类标签)
"""
def majorityCnt(classList):
classCount = {}
for vote in classList: # 统计classList中每个元素出现的次数
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) # 根据字典的值降序排序
return sortedClassCount[0][0] # 返回classList中出现次数最多的元素
"""
函数说明:递归构建决策树
Parameters:
dataSet - 训练数据集
labels - 分类属性标签
featLabels - 存储选择的最优特征标签
Returns:
myTree - 决策树
"""
def createTree(dataSet, labels, featLabels):
classList = [example[-1] for example in dataSet] # 取分类标签(是否放贷:yes or no)
if classList.count(classList[0]) == len(classList): # 如果类别完全相同则停止继续划分
return classList[0]
if len(dataSet[0]) == 1: # 遍历完所有特征时返回出现次数最多的类标签
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) # 选择最优特征
bestFeatLabel = labels[bestFeat] # 最优特征的标签
featLabels.append(bestFeatLabel)
myTree = {bestFeatLabel: {}} # 根据最优特征的标签生成树
del (labels[bestFeat]) # 删除已经使用特征标签
featValues = [example[bestFeat] for example in dataSet] # 得到训练集中所有最优特征的属性值
uniqueVals = set(featValues) # 去掉重复的属性值
for value in uniqueVals:
subLabels = labels[:]
# 递归调用函数createTree(),遍历特征,创建决策树。
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels, featLabels)
return myTree
"""
函数说明:使用决策树执行分类
Parameters:
inputTree - 已经生成的决策树
featLabels - 存储选择的最优特征标签
testVec - 测试数据列表,顺序对应最优特征标签
Returns:
classLabel - 分类结果
"""
def classify(inputTree, featLabels, testVec):
firstStr = next(iter(inputTree)) # 获取决策树结点
secondDict = inputTree[firstStr] # 下一个字典
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else:
classLabel = secondDict[key]
return classLabel
if __name__ == '__main__':
dataSet, labels = createDataSet()
featLabels = []
myTree = createTree(dataSet, labels, featLabels)
print(myTree)
testVec = [1,1] # 测试数据
result = classify(myTree, featLabels, testVec)
if result == 'yes':
print('放贷')
if result == 'no':
print('不放贷')
1.5 主要程序代码
from math import log
import operator
"""
函数说明:创建测试数据集
"""
def createDataSet():
dataSet = [[0, 0, 0, 0, 'no'], # 数据集
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
labels = ['年龄', '有工作', '有自己的房子', '信贷情况'] # 分类属性
return dataSet, labels # 返回数据集和分类属性
"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
dataSet - 数据集
Returns:
shannonEnt - 经验熵(香农熵)
"""
def calcShannonEnt(dataSet):
numEntires = len(dataSet) # 返回数据集的行数
labelCounts = {} # 保存每个标签(Label)出现次数的字典
for featVec in dataSet: # 对每组特征向量进行统计
currentLabel = featVec[-1] # 提取标签(Label)信息
if currentLabel not in labelCounts.keys(): # 如果标签(Label)没有放入统计次数的字典,添加进去
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 # Label计数
shannonEnt = 0.0 # 经验熵(香农熵)
for key in labelCounts: # 计算香农熵
prob = float(labelCounts[key]) / numEntires # 选择该标签(Label)的概率
shannonEnt -= prob * log(prob, 2) # 利用公式计算
return shannonEnt # 返回经验熵(香农熵)
"""
函数说明:按照给定特征划分数据集
Parameters:
dataSet - 待划分的数据集
axis - 划分数据集的特征
value - 需要返回的特征的值
"""
def splitDataSet(dataSet, axis, value):
retDataSet = [] # 创建返回的数据集列表
for featVec in dataSet: # 遍历数据集
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] # 去掉axis特征
reducedFeatVec.extend(featVec[axis + 1:]) # 将符合条件的添加到返回的数据集
retDataSet.append(reducedFeatVec)
return retDataSet # 返回划分后的数据集
"""
函数说明:选择最优特征
Parameters:
dataSet - 数据集
Returns:
bestFeature - 信息增益最大的(最优)特征的索引值
"""
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 # 特征数量
baseEntropy = calcShannonEnt(dataSet) # 计算数据集的香农熵
bestInfoGain = 0.0 # 信息增益
bestFeature = -1 # 最优特征的索引值
for i in range(numFeatures): # 遍历所有特征
# 获取dataSet的第i个所有特征
featList = [example[i] for example in dataSet]
uniqueVals = set(featList) # 创建set集合{},元素不可重复
newEntropy = 0.0 # 经验条件熵
for value in uniqueVals: # 计算信息增益
subDataSet = splitDataSet(dataSet, i, value) # subDataSet划分后的子集
prob = len(subDataSet) / float(len(dataSet)) # 计算子集的概率
newEntropy += prob * calcShannonEnt(subDataSet) # 根据公式计算经验条件熵
infoGain = baseEntropy - newEntropy # 信息增益
print("第%d个特征的增益为%.3f" % (i, infoGain)) # 打印每个特征的信息增益
if (infoGain > bestInfoGain): # 计算信息增益
bestInfoGain = infoGain # 更新信息增益,找到最大的信息增益
bestFeature = i # 记录信息增益最大的特征的索引值
return bestFeature # 返回信息增益最大的特征的索引值
"""
函数说明:统计classList中出现此处最多的元素(类标签)
Parameters:
classList - 类标签列表
Returns:
sortedClassCount[0][0] - 出现此处最多的元素(类标签)
"""
def majorityCnt(classList):
classCount = {}
for vote in classList: # 统计classList中每个元素出现的次数
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) # 根据字典的值降序排序
return sortedClassCount[0][0] # 返回classList中出现次数最多的元素
"""
函数说明:递归构建决策树
Parameters:
dataSet - 训练数据集
labels - 分类属性标签
featLabels - 存储选择的最优特征标签
Returns:
myTree - 决策树
"""
def createTree(dataSet, labels, featLabels):
classList = [example[-1] for example in dataSet] # 取分类标签(是否放贷:yes or no)
if classList.count(classList[0]) == len(classList): # 如果类别完全相同则停止继续划分
return classList[0]
if len(dataSet[0]) == 1: # 遍历完所有特征时返回出现次数最多的类标签
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) # 选择最优特征
bestFeatLabel = labels[bestFeat] # 最优特征的标签
featLabels.append(bestFeatLabel)
myTree = {bestFeatLabel: {}} # 根据最优特征的标签生成树
del (labels[bestFeat]) # 删除已经使用特征标签
featValues = [example[bestFeat] for example in dataSet] # 得到训练集中所有最优特征的属性值
uniqueVals = set(featValues) # 去掉重复的属性值
for value in uniqueVals:
subLabels = labels[:]
# 递归调用函数createTree(),遍历特征,创建决策树。
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels, featLabels)
return myTree
"""
函数说明:使用决策树执行分类
Parameters:
inputTree - 已经生成的决策树
featLabels - 存储选择的最优特征标签
testVec - 测试数据列表,顺序对应最优特征标签
Returns:
classLabel - 分类结果
"""
def classify(inputTree, featLabels, testVec):
firstStr = next(iter(inputTree)) # 获取决策树结点
secondDict = inputTree[firstStr] # 下一个字典
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else:
classLabel = secondDict[key]
return classLabel
if __name__ == '__main__':
dataSet, labels = createDataSet()
featLabels = []
myTree = createTree(dataSet, labels, featLabels)
print(myTree)
testVec = [1,1] # 测试数据
result = classify(myTree, featLabels, testVec)
if result == 'yes':
print('放贷')
if result == 'no':
print('不放贷')