本文中所用的的方法在一个pdf中,我会在文末将其上传
import math
def isPrime(num):
if num < 2:
print("该数不是素数")
# see if num is divisible by any number up to the square root of num
else:
for i in range (2, int(math . sqrt(num) ) +1):
if num % i == 0:
print("该数不是素数")
else:
print("该数是素数")
num = int(input("请输入第一个数: "))
isPrime(num)
import math
# all numbers less than 2 are not prime
def primeSieve(sieveSize) :
# Returns a list of prime numbers calculated using
# the Sieve of Eratosthenes algorithm .
sieve = [True] * sieveSize
sieve[0] = False # zero and one are not prime numbers
sieve[1] = False
# create the sieve
for i in range(2, int(math . sqrt (sieveSize )) +1):
pointer = i * 2
while pointer < sieveSize:
sieve[pointer] = False
pointer += i
# compile the list of primes
# compile the list of prime
primes = []
for i in range(sieveSize) :
if sieve[i] == True :
primes.append(i)
print(primes)
sieveSize = int(input("请用第二种方法计算: "))
primeSieve(sieveSize)
import random
def rabinMiller(num):
# Returns True if num is a prime number .
s = num - 1
t = 0
while s % 2 == 0:
# keep halving s while it is even (and use t
# to count how many times we halve s)
s = s // 2
t += 1
for trials in range(5) : # try to falsify num ' s primality 5 times
a = random.randrange (2, num - 1)
v = pow(a, s, num)
if v != 1: # this test does not apply if v is 1.
i = 0
while v != (num - 1):
if i == t - 1:
return False
else:
i = i + 1
v = (v ** 2) % num
return True
def isPrime(num):
if (num < 2):
return False # 0, 1, and negative numbers are not prime
lowPrimes = [1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,
73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,
283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,
547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,
661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,
811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
947,953,967,971,977,983,991,997]
if num in lowPrimes:
return True
# See if any of the low prime numbers can divide num
for prime in lowPrimes :
if (num % prime == 0) :
return False
# If all else fails, call rabinMiller( ) to determine if num is a prime .
return rabinMiller(num)
def generateLargePrime(keysize=1024):
# Return a random prime number of keysize bits in size .
while True:
num = random.randrange (2** (keysize - 1), 2** (keysize) )
if isPrime(num):
return num
https://download.csdn.net/download/programmer9/11929556