题目:hysics-informed neural networks for inverse problems in nano-optics and metamaterials
作者:Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro
期刊会议:Computational Physics
年份:19
论文地址:
代码:
动机:
问题定义:
逆问题:
f ( x ; ∂ u ^ ∂ x 1 , … , ∂ u ^ ∂ x d ; ∂ 2 u ^ ∂ x 1 ∂ x 1 , … , ∂ 2 u ^ ∂ x 1 ∂ x d ; … ; λ ) = 0 , x ∈ Ω f\left(\mathbf{x} ; \frac{\partial \hat{u}}{\partial x_{1}}, \ldots, \frac{\partial \hat{u}}{\partial x_{d}} ; \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{1}}, \ldots, \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{d}} ; \ldots ; \lambda\right)=0, \quad \mathbf{x} \in \Omega f(x;∂x1∂u^,…,∂xd∂u^;∂x1∂x1∂2u^,…,∂x1∂xd∂2u^;…;λ)=0,x∈Ω
其中 λ \lambda λ未知,其中loss定义为, L i \mathcal{L}_{i} Li,是初始点的 l o s s loss loss, L b \mathcal{L}_{b} Lb是边界点的 l o s s loss loss
L ( θ , λ ) = w f L f ( θ , λ ; T f ) + w i L i ( θ , λ ; T i ) + w b L b ( θ , λ ; T b ) \mathcal{L}(\boldsymbol{\theta}, \lambda)=w_{f} \mathcal{L}_{f}\left(\boldsymbol{\theta}, \lambda ; \mathcal{T}_{f}\right)+w_{i} \mathcal{L}_{i}\left(\boldsymbol{\theta}, \lambda ; \mathcal{T}_{i}\right)+w_{b} \mathcal{L}_{b}\left(\boldsymbol{\theta}, \lambda ; \mathcal{T}_{b}\right) L(θ,λ)=wfLf(θ,λ;Tf)+wiLi(θ,λ;Ti)+wbLb(θ,λ;Tb)
其中
L f ( θ , λ ; T f ) = 1 ∣ T f ∣ ∑ x ∈ T f ∥ f ( x ; ∂ u ^ ∂ x 1 , … , ∂ u ^ ∂ x d ; ∂ 2 u ^ ∂ x 1 ∂ x 1 , … , ∂ 2 u ^ ∂ x 1 ∂ x d ; … ; λ ) ∥ 2 2 L i ( θ , λ ; T i ) = 1 ∣ T i ∣ ∑ x ∈ T i ∥ u ^ ( x ) − u ( x ) ∥ 2 2 L b ( θ , λ ; T b ) = 1 ∣ T b ∣ ∑ x ∈ T b ∥ B ( u ^ , x ) ∥ 2 2 \begin{aligned} \mathcal{L}_{f}\left(\boldsymbol{\theta}, \lambda ; \mathcal{T}_{f}\right) &=\frac{1}{\left|\mathcal{T}_{f}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{f}}\left\|f\left(\mathbf{x} ; \frac{\partial \hat{u}}{\partial x_{1}}, \ldots, \frac{\partial \hat{u}}{\partial x_{d}} ; \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{1}}, \ldots, \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{d}} ; \ldots ; \lambda\right)\right\|_{2}^{2} \\ \mathcal{L}_{i}\left(\boldsymbol{\theta}, \lambda ; \mathcal{T}_{i}\right) &=\frac{1}{\left|\mathcal{T}_{i}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{i}}\|\hat{u}(\mathbf{x})-u(\mathbf{x})\|_{2}^{2} \\ \mathcal{L}_{b}\left(\boldsymbol{\theta}, \lambda ; \mathcal{T}_{b}\right) &=\frac{1}{\left|\mathcal{T}_{b}\right|} \sum_{\mathbf{x} \in \mathcal{T}_{b}}\|\mathcal{B}(\hat{u}, \mathbf{x})\|_{2}^{2} \end{aligned} Lf(θ,λ;Tf)Li(θ,λ;Ti)Lb(θ,λ;Tb)=∣Tf∣1x∈Tf∑∥∥∥∥f(x;∂x1∂u^,…,∂xd∂u^;∂x1∂x1∂2u^,…,∂x1∂xd∂2u^;…;λ)∥∥∥∥22=∣Ti∣1x∈Ti∑∥u^(x)−u(x)∥22=∣Tb∣1x∈Tb∑∥B(u^,x)∥22
根据PINN构建如下网络:建立微分方程解的代理模型,在更加 u u u求得 l o s s loss loss,最后最小化 l o s s loss loss求得参数 θ \theta θ和 λ \lambda λ
具体应用于均质有限尺寸的超材料问题:
∇ 2 E z ( x , y ) + ε r ( x , y ) k 0 2 E z = 0 \nabla^{2} E_{z}(x, y)+\varepsilon_{r}(x, y) k_{0}^{2} E_{z}=0 ∇2Ez(x,y)+εr(x,y)k02Ez=0
其中 E z E_{z} Ez是电厂的z分量, ε r ( x , y ) \varepsilon_{r} (x, y) εr(x,y)是空间相关的相对介电常数, k = 2 π / λ 0 k=2\pi /\lambda_{0} k=2π/λ0
创新: