pytorch-实现猴痘识别

  • 本文为365天深度学习训练营 中的学习记录博客
  • 参考文章:[365天深度学习训练营-第P4周:猴痘识别【365天深度学习训练营-第P4周:猴痘病识别 · 语雀 (yuque.com)
  • 原作者:K同学啊|接辅导、项目定制

我的环境

  • 语言环境:Python3.6
  • 编译器:jupyter lab
  • 深度学习环境:pytorch1.10
  • 参考文章:本人博客(60条消息) 机器学习之——tensorflow+pytorch_重邮研究森的博客-CSDN博客

要求:

  1. 训练过程中保存效果最好的模型参数。(✔)
  2. 加载最佳模型参数识别本地的一张图片。(✔)
  3. 调整网络结构使测试集accuracy到达88%(重点)。(✔)

拔高(可选):

  1. 调整模型参数并观察测试集的准确率变化。(✔)
  2. 尝试设置动态学习率。(×)
  3. 测试集accuracy到达90%。(✔)

目录

一 前期工作

二 数据预处理

数据格式设置

数据集划分

设置dataset

检查数据格式 

 三 搭建网络

四 训练模型

1.设置学习率

2.模型训练

五 模型评估

1.Loss和Accuracy图

2.对结果进行预测

3.总结


一 前期工作

环境:python3.6,1080ti,pytorch1.10(实验室服务器的环境)

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
device

 2.导入数据

import os,PIL,random,pathlib

data_dir = '4-data/'
data_dir = pathlib.Path(data_dir)
print(data_dir)

data_paths = list(data_dir.glob('*'))
print(data_paths)
classeNames = [str(path).split("/")[1] for path in data_paths]
classeNames

二 数据预处理

数据格式设置

total_datadir = './4-data/'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

数据集划分

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

设置dataset

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

检查数据格式 

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

 三 搭建网络

import torch.nn.functional as F
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential,ReLU
        # """
        # nn.Conv2d()函数:
        # 第一个参数(in_channels)是输入的channel数量
        # 第二个参数(out_channels)是输出的channel数量
        # 第三个参数(kernel_size)是卷积核大小
        # 第四个参数(stride)是步长,默认为1
        # 第五个参数(padding)是填充大小,默认为0
        # """
class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn,self).__init__()
        # 卷积层
        self.layers = Sequential(
            # 第一层
            nn.Conv2d(3, 24, kernel_size=5),
            nn.BatchNorm2d(24),
            nn.ReLU(),
            # 第二层
            nn.Conv2d(24,64 , kernel_size=5),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            nn.Conv2d(64, 128, kernel_size=5),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 24, kernel_size=5),
            nn.BatchNorm2d(24),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            nn.Flatten(),
            nn.Linear(24*50*50, 516,bias=True),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(516, 215,bias=True),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(215, len(classeNames),bias=True),
        )

    def forward(self, x):

        x = self.layers(x)
        return x    

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

打印网络结构

pytorch-实现猴痘识别_第1张图片

四 训练模型

1.设置学习率

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.模型训练

训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

测试函数 

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

具体训练代码 

epochs     = 20
min_loss = 100
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    print('tr loss',epoch_train_loss)
    print('te loss',epoch_test_loss)
    
    if  min_loss > epoch_test_loss :
        min_loss = epoch_test_loss
        print("save model")
        # 保存模型语句
        PATH = './bestmodel'+'%d'%epoch+'.pth'  # 保存的参数文件名
        torch.save(model.state_dict(), PATH )
    else :
        print("不能保存")
    
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

五 模型评估

1.Loss和Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

pytorch-实现猴痘识别_第2张图片

2.对结果进行预测

from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./4-data/Monkeypox/M01_01_00.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

预测结果如下:

3.总结

1.本次引入了根据准确率保存最佳模型的部分,其实就是判断每次测试集的准确率来看是否要保存。

2.本次调整了网络模型,参考上篇天气识别。

3.本次调整了预测的代码,之前我的太复杂了,这次参考k导的简化了很多

4.没有完成动态学习率设置,主要本周有点忙,害。。。

你可能感兴趣的:(深度学习,python,机器学习)