麻雀算法极限学习机SSA-ELM回归预测及其MATLAB代码实现

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

个人主页:Matlab科研工作室

个人信条:格物致知。

更多Matlab仿真内容点击

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

极限学习机(ExtremeLearningMachine,ELM)模型作为典型的单隐含层前馈神经网络,具有学习速度快,泛化能力较好的特点,但它采用梯度迭代法按照最大下降速度方向进行运算,往往需要设置较多的代数,容易陷入局部最优解。本文采用麻雀算法对其隐含层的初始权值与阈值进行优化,麻雀搜索算法是一种新型的群智能优化算法, 在 2020 年由 Xue 等提出,主要是受麻雀的觅食 和反哺食行为启发,具有寻优能力强、收敛速度快的特点。麻雀搜索算法将整个麻雀种群分为三类,即寻找食物的生产者,抢夺食物的加入者和发现危险的警戒者 。生产者和加入者可以相互转化,但各自在 种群中的占比不会发生变化。麻雀算法优化极限学习机(GA-ELM)的具体构建过程可以概述为:确定ELM的输入与输出样本集;确定对ELM初始权值及阈值的编码方式;随机采样产生第一代种群;计算每个个体的适应值,并排序选优;按照既定规则更新产生下一代种群直至满足终止条件为止,终止条件设置为预测值与期望值的误差矩阵的范数小于某一设定值。​

⛄ 部分代码

function [output] = my_map(type, raw_data, raw_data_max, raw_data_min, max, min)

if type ~= 0

    output = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min);

end

if type ~= 1 

    output = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min);

end

end

function [out] = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min)

    for i = 1:length(raw_data')

        out(i) = (max - min) * (raw_data(i) - raw_data_min) / (raw_data_max - raw_data_min) + min;

    end

end

function [out] = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min)

    for i = 1:length(raw_data')

        out(i) = (raw_data(i) - min) * (raw_data_max - raw_data_min) / (max - min) + raw_data_min;

    end

end

⛄ 运行结果

麻雀算法极限学习机SSA-ELM回归预测及其MATLAB代码实现_第1张图片

麻雀算法极限学习机SSA-ELM回归预测及其MATLAB代码实现_第2张图片

麻雀算法极限学习机SSA-ELM回归预测及其MATLAB代码实现_第3张图片

⛄ 参考文献

[1]马飞燕, 李向新. 基于改进麻雀搜索算法-核极限学习机耦合算法的滑坡位移预测模型[J]. 科学技术与工程, 2022(022-005).

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

你可能感兴趣的:(神经网络预测,matlab,算法,回归)