pytorch 高光谱图像分类

pytorch 代码,没有注释,自己理解

mirrors / eecn / Hyperspectral-Classification · GitCodeicon-default.png?t=M85Bhttps://gitcode.net/mirrors/eecn/Hyperspectral-Classification?utm_source=csdn_github_accelerator读我:

DeepHyperX

A Python tool to perform deep learning experiments on various hyperspectral datasets. 

Reference 

This toolbox was used for our review paper in Geoscience and Remote Sensing Magazine : 

N. Audebert, B. Le Saux and S. Lefevre, 
"Deep Learning for Classification of Hyperspectral Data: A Comparative Review," 
in IEEE Geoscience and Remote Sensing Magazine, vol. 7, no. 2, pp. 159-173, June 2019.

 N. Audebert, B. Le Saux and S. Lefevre, "Deep Learning for Classification of Hyperspectral Data: A Comparative Review," in IEEE Geoscience and Remote Sensing Magazine, vol. 7, no. 2, pp. 159-173, June 2019.

 Bibtex format :

@article{8738045, author={N. {Audebert} and B. {Le Saux} and S. {Lefèvre}}, journal={IEEE Geoscience and Remote Sensing Magazine}, title={Deep Learning for Classification of Hyperspectral Data: A Comparative Review}, year={2019}, volume={7}, number={2}, pages={159-173}, doi={10.1109/MGRS.2019.2912563}, ISSN={2373-7468}, month={June},} 

Note:

The original code forked from GitLib project Linkicon-default.png?t=M85Bhttps://gitlab.inria.fr/naudeber/DeepHyperX

And there is a repository on GitHub, which maybe is the official project code. DeepHyperXicon-default.png?t=M85Bhttps://github.com/nshaud/DeepHyperX 

This repository will not update in the feature.If you need continuous research, please go to the project DeepHyperXicon-default.png?t=M85Bhttps://github.com/nshaud/DeepHyperX Requirements

This tool is compatible with Python 2.7 and Python 3.5+.

It is based on the PyTorch deep learning and GPU computing framework and use the Visdom visualization server.

Setup 

The easiest way to install this code is to create a Python virtual environment and to install dependencies using: pip install -r requirements.txt 

 Hyperspectral datasets

 Several public hyperspectral datasets are available on the UPV/EHU wiki. Users can download those beforehand or let the tool download them. The default dataset folder is ./Datasets/, although this can be modified at runtime using the --folder arg.

 

At this time, the tool automatically downloads the following public datasets:

  • Pavia University
  • Pavia Center
  • Kennedy Space Center
  • Indian Pines
  • Botswana

The original Data Fusion Contest 2018 hyperspectral dataset(DFC2018_HSI) cannot be obtained now, you can try new IGRSS Data or email me to get the original data.(For research and non commercial purposes,do not spread randomly) 

In report HSIAL there is a  statement :
If you wish to use the data, please be sure to email us and provide your Name, Contact 
information, affiliation (University, research lab etc.), and an acknowledgement that you 
will cite this dataset and its source appropriately, as well as provide an acknowledgement
 to the IEEE GRSS IADF and the Hyperspectral Image Analysis Lab at the University of Houston, in any manuscript(s) resulting from it.

An example dataset folder has the following structure:

Datasets
├── Botswana
│   ├── Botswana_gt.mat
│   └── Botswana.mat
├── DFC2018_HSI
│   ├── 2018_IEEE_GRSS_DFC_GT_TR.tif
│   ├── 2018_IEEE_GRSS_DFC_HSI_TR
│   ├── 2018_IEEE_GRSS_DFC_HSI_TR.HDR
├── IndianPines
│   ├── Indian_pines_corrected.mat
│   ├── Indian_pines_gt.mat
├── KSC
│   ├── KSC_gt.mat
│   └── KSC.mat
├── PaviaC
│   ├── Pavia_gt.mat
│   └── Pavia.mat
└── PaviaU
    ├── PaviaU_gt.mat
    └── PaviaU.mat

 Adding a new dataset

Adding a custom dataset can be done by modifying the custom_datasets.py file. Developers should add a new entry to the CUSTOM_DATASETS_CONFIG variable and define a specific data loader for their use case. 

Models 

Currently, this tool implements several SVM variants from the scikit-learn library and many state-of-the-art deep networks implemented in PyTorch. 

  • SVM (linear, RBF and poly kernels with grid search)
  • SGD (linear SVM using stochastic gradient descent for fast optimization)
  • baseline neural network (4 fully connected layers with dropout)
  • 1D CNN (Deep Convolutional Neural Networks for Hyperspectral Image Classification, Hu et al., Journal of Sensors 2015)
  • Semi-supervised 1D CNN (Autoencodeurs pour la visualisation d'images hyperspectrales, Boulch et al., GRETSI 2017)
  • 2D CNN (Hyperspectral CNN for Image Classification & Band Selection, with Application to Face Recognition, Sharma et al, technical report 2018)
  • Semi-supervised 2D CNN (A semi-supervised Convolutional Neural Network for Hyperspectral Image Classification, Liu et al, Remote Sensing Letters 2017)
  • 3D CNN (3-D Deep Learning Approach for Remote Sensing Image Classification, Hamida et al., TGRS 2018)
  • 3D FCN (Contextual Deep CNN Based Hyperspectral Classification, Lee and Kwon, IGARSS 2016)
  • 3D CNN (Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks, Chen et al., TGRS 2016)
  • 3D CNN (Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network, Li et al., Remote Sensing 2017)
  • 3D CNN (HSI-CNN: A Novel Convolution Neural Network for Hyperspectral Image, Luo et al, ICPR 2018)
  • Multi-scale 3D CNN (Multi-scale 3D Deep Convolutional Neural Network for Hyperspectral Image Classification, He et al, ICIP 2017)

 Adding a new model

Adding a custom deep network can be done by modifying the models.py file. This implies creating a new class for the custom deep network and altering the get_model function. 

Usage 

Start a Visdom server: python -m visdom.server and go to http://localhost:8097 to see the visualizations (or http://localhost:9999 if you use Docker). 

Then, run the script main.py

The most useful arguments are: 

  • --model to specify the model (e.g. 'svm', 'nn', 'hamida', 'lee', 'chen', 'li'),
  • --dataset to specify which dataset to use (e.g. 'PaviaC', 'PaviaU', 'IndianPines', 'KSC', 'Botswana'),
  • the --cuda switch to run the neural nets on GPU. The tool fallbacks on CPU if this switch is not specified.

 

There are more parameters that can be used to control more finely the behaviour of the tool. See python main.py -h for more information. 

Examples: 

 

  • python main.py --model SVM --dataset IndianPines --training_sample 0.3 This runs a grid search on SVM on the Indian Pines dataset, using 30% of the samples for training and the rest for testing. Results are displayed in the visdom panel.
  • python main.py --model nn --dataset PaviaU --training_sample 0.1 --cuda 0 This runs on GPU a basic 4-layers fully connected neural network on the Pavia University dataset, using 10% of the samples for training.
  • python main.py --model hamida --dataset PaviaU --training_sample 0.5 --patch_size 7 --epoch 50 --cuda 0 This runs on GPU the 3D CNN from Hamida et al. on the Pavia University dataset with a patch size of 7, using 50% of the samples for training and optimizing for 50 epochs.

License information 

Code for the DeepHyperX toolbox is dual licensed depending on applications, research or commercial. 

你可能感兴趣的:(pytorch,pytorch,分类,深度学习)