- 遗传算法与深度学习实战(33)——WGAN详解与实现
盼小辉丶
深度学习人工智能生成对抗网络
遗传算法与深度学习实战(33)——WGAN详解与实现0.前言1.训练生成对抗网络的挑战2.GAN优化问题2.1梯度消失2.2模式崩溃2.3无法收敛3WassersteinGAN3.1Wasserstein损失3.2使用Wasserstein损失改进DCGAN小结系列链接0.前言原始的生成对抗网络(GenerativeAdversarialNetwork,GAN)在训练过程中面临着模式坍塌和梯度消失
- 遗传算法与深度学习实战(32)——生成对抗网络详解与实现
盼小辉丶
遗传算法与深度学习实战深度学习生成对抗网络人工智能
遗传算法与深度学习实战(32)——生成对抗网络详解与实现0.前言1.生成对抗网络2.构建卷积生成对抗网络小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetworks,GAN)是一种由两个相互竞争的神经网络组成的深度学习模型,它由一个生成网络和一个判别网络组成,通过彼此之间的博弈来提高生成网络的性能。生成对抗网络使用神经网络生成与原始图像集非常相似的新图像,它在图像生
- 【Python】已解决:ERROR: Could not find a version that satisfies the requirement cv2 (from versions: none)
屿小夏
python开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- python plt网格
大负
python开发语言
如何在Python中使用Matplotlib绘制带网格的图形在数据可视化的领域中,Matplotlib是Python中最常用的绘图库之一。网格线可以帮助读者更好地理解图表中的数据差异和趋势。本篇文章将指导您如何在使用Matplotlib绘制图形时添加网格线。接下来,我们将通过几个步骤来完成这个任务。流程概述以下是实现“Pythonplt网格”的整体流程:步骤说明1导入Matplotlib和其他必要
- Windows程序设计15:Win32窗口控件的创建与响应
智能与优化
Windows程序设计windowsmicrosoft开发语言c++visualstudio
文章目录前言一、控件的窗口类注册1.说明2.使用示例二、按钮控件的点击响应总结前言Windows程序设计15:Win32窗口控件的创建与响应。一、控件的窗口类注册1.说明使用CreateWindow来创建窗口的时候要进行窗口类的注册。但是如果创建的是系统预定义的一些控件的时候,就不需要自己注册窗口类了,系统已经帮我们注册好了。例如:按钮为WC_BUTTON,编辑框为WC_EDIT,静态文本框为WC
- 2025年主流组装电脑配置推荐_2025从入门到高端热门装机配置推荐
电脑技术分享网
2025年主流电脑配置推荐2025年组装电脑配置推荐2025年组装电脑配置清单2025年低中高端电脑配置推荐组装电脑电脑配置清单
目前2025年主流组装电脑配置有哪些,小编己经按捺不住想和大家进行分享了,根据不同的用途,配置单一共分为三大类:低端、中端、高端。还是老惯例,配置单基本上都包含了intel平台和amd平台。电脑推荐配置说明:电脑配置推荐说明是一个涉及多个方面的过程,需要根据用户的具体需求、预算和使用场景来综合考虑。以下是一份详细的电脑配置推荐说明:处理器(CPU):处理器是电脑的核心组件之一,负责执行指令和控制整
- (Aliyun AI ACP 04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述
North_D
人工智能基础知识点人工智能深度学习学习自然语言处理迁移学习python神经网络
文章目录阿里云人工智能工程师ACP认证考试知识点辅助阅读(AliyunAIACP04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述I.深度学习算法1️⃣前馈神经网络(FFNs)详解2️⃣卷积神经网络(CNNs)探秘II.增强学习探索3️⃣增强学习基础与决策过程4️⃣常见增强学习算法剖析III.迁移学习实践5️⃣迁移学习基本原理与应用阿里云人工智能工程师ACP认证考试知识点辅
- AI大模型探秘:核心能力与应用场景深度解析
程序员辣条
人工智能javaAI大模型大模型spring
AI大模型是什么通过概念考察的方式,拆开来了解AI大模型。AI:包含很多术语,如:模式识别、自然语言处理、神经网络、机器学习、深度学习、强化学习、人类反馈强化学习等。类比:AI是电力–吴恩达。就像电力技术,是一种通用技术,对很多设备起作用,同样的AI可以赋能各种场景。大模型:把LM比作人的大脑。大参数大规模。参数就是脑细胞,脑细胞越多通常这个人越聪明,参数越多的LM通常越智能。分类语言大模型:Ch
- 利用HTML和css技术编写学校官网页面
彭友圈101
css前端html
目录一,图例展示二,代码说明1,html部分:【第一张图片】【第二张图片】【第三张图片】2,css部分:【第一张图片】【第二张图片】【第三张图片】三,程序代码一,图例展示二,代码说明1,html部分:【第一张图片】创建了一个基本的页面结构,包含header(顶部导航栏)和main(主横幅区域)。在header中,设置了学校logo、学校名称、主导航菜单以及用户相关选项(学生、教工等)。main区域
- C语言中%d等的意义
另寻沧海
C语言提高
格式说明由“%”和格式字符组成,如%d%f等。它的作用是将输出的数据转换为指定的格式输出。格式说明总是由“%”字符开始的。不同类型的数据用不同的格式字符。格式字符有d,o,x,u,c,s,f,e,g等。如%d整型输出,%ld长整型输出,%o以八进制数形式输出整数,%x以十六进制数形式输出整数,%u以十进制数输出unsigned型数据(无符号数)。%c用来输出一个字符,%s用来输出一个字符串,%f用
- 二值连接:深度神经网络的轻量级革命
步子哥
dnn人工智能神经网络
引言:深度学习的下一步是什么?深度神经网络(DeepNeuralNetworks,DNN)近年来在语音识别、图像分类和自然语言处理等领域取得了令人瞩目的成就。然而,这些突破背后的一个关键推手是计算能力的飞速提升,尤其是图形处理单元(GPU)的广泛应用。然而,随着模型规模和数据量的增长,深度学习的计算需求也在不断攀升。与此同时,移动设备和嵌入式系统的快速发展对低功耗、高效能的深度学习算法提出了更高的
- 2024年云南省职业院校技能大赛-应用软件系统开发赛项(高职组)
QY04261230
应用软件系统开发赛项人工智能团队开发vue.jsjavaelementui
2024年云南省职业院校技能大赛-应用软件系统开发赛项(高职组)赛题竞赛说明一、项目背景党的二十大报告指出,要加快建设制造强国、数字中国,推动制造业高端化、智能化、绿色化发展。《IDC中国制造企业调研报告,2021》报告指出,制造执行系统(MES,ManufacturingExecutionSystem)是未来两年制造企业最优先投资的应用软件系统之一。MES是智能制造的基础、核心和灵魂,它覆盖了整
- Samtools手册中文版
请你喝好果汁641
linux生信linux
软件手册:Samtools手册翻译Samtools是一个用于处理和分析SAM(SequenceAlignment/Map)和BAM(BinaryAlignment/Map)格式文件的工具集。它提供了多种命令用于序列比对、格式转换、索引创建和统计分析等。接下来我们翻译这一部分的命令说明:常用samtools命令列表好的,我们将这39条命令拆分为三部分进行说明,并为每个部分提供举例。1.添加或替换读取
- 定时任务单线程消费 redis 中数据导致消费能力不足
disgare
问题排查缓存
问题描述大年初一,收到报警通知,Redis机器内存使用率已经超过90%,达到了危险值。Redis管理同学反馈这一情况,希望尽快处理以避免系统崩溃或性能严重下降处理流程反馈直接上级拉群并简要说明问题:第一时间在工作群里通知直接上级和其他相关同事,简要说明Redis内存使用率过高,已经达到危险值,需要紧急处理初步沟通解决方案:询问是否有紧急处理方案,以便快速响应排查问题排除新需求导致的问题:春节期间没
- 嵌入式单片机中寄存器开发与实现
嵌入式开发星球
单片机项目实战操作之优秀单片机嵌入式硬件
第一:GPIO寄存器开发流程不管是图形界面还是函数库开发,本质都是对底层寄存器的使用,一般在实时性要求不高的情况,就使用前两种方式,但是对实时性要求比较高的情况下,就需要使用寄存器开发。所以就说明一下使用流程。分析原理图,找到外设连接的芯片的引脚PF9分析原理图,理解硬件的控制原理高电平灭低电平亮分析中文参考手册或者芯片数据手册,了解需要使用的寄存器都有哪些理解寄存器的工作原理参考中文参考手册ST
- 算法问题整理(二)
分享总结快乐
算法
网络资料整理个人学习,感谢各位大神!(若侵则删)问题10:卷积-目标检测系列问题参考:40+目标检测网络架构大盘点!从基础架构ResNet到最强检测器Yolov7再到最新部署神器GhostNetV2【深度学习】YOLO检测器家族所有版本(2024最新汇总、详细介绍)_yolo各个版本-CSDN博客YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍!!-腾讯云开发者社区-腾讯云关键挑战:类
- 探秘 GitCode 上的开源项目:91pron - AI 引擎驱动的智能视频处理工具
毕艾琳
探秘GitCode上的开源项目:91pron-AI引擎驱动的智能视频处理工具去发现同类优质开源项目:https://gitcode.com/项目简介在平台上,有一个名为的开源项目,它是一个利用人工智能技术进行智能视频处理的应用。虽然项目的名称可能有些隐晦,但其核心功能却极具实用价值,特别是对于那些需要自动化处理大量视频数据的工作。技术分析1.AI模型应用91pron使用了深度学习模型,尤其是计算机
- 前端 | JavaScript中的reduce方法
酒酿泡芙1217
前端javascript开发语言reduce
1.什么是reducereduce方法是JavaScript中数组的重要方法之一,用于对数组中的元素进行累积计算。它接收一个回调函数作为参数,并返回一个最终计算结果。reduce在许多场景下都非常有用,比如求和、数组扁平化、对象计数、数据转换等。2.reduce语法2.1语法arr.reduce(callback,initialValue)2.2参数说明callback(accumulator,c
- 每日一题——滑动窗口的最大值
tt555555555555
面经算法题C语言c语言八股文算法数据结构leetcode
滑动窗口的最大值题目描述示例说明解题思路双端队列的特点实现步骤代码实现(C语言)代码解析总结题目描述给定一个长度为n的数组num和滑动窗口的大小size,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,它们的最大值分别为{4,4,6,6,6,5}。示例示例1输入:[2,3,4,2,6,2,5,1],3返回值:[4,4
- GPT对话代码库——esp32和单片机实现远程wifi升级代码方案。
玄奕子
嵌入式单片机gptstm32BootloaderOTA远程升级
目录1,问:1,答:方案概述ESP32实现OTA升级的代码方案步骤1:准备OTA固件步骤2:ESP32OTA升级实现代码代码说明:步骤3:设置固件服务器单片机和ESP32的通信与控制单片机通过UART控制ESP32升级单片机发送指令给ESP32ESP32处理单片机发送的指令方案总结提问模型:GPT-4o-mini提问时间:2024.09.211,问:esp32和单片机实现远程wifi升级代码方案1
- Python 中实现基于CNN和BiLSTM与注意力机制结合的多输入单输出回归预测
nantangyuxi
Pythonpythoncnn回归分类开发语言人工智能神经网络
目录Python中实她基她CNN和BiLTTM她注意力机制结合她多输入单输出回归预测...1项目背景介绍...1项目目标她意义...1项目挑战...2项目特点她创新...3项目应用领域...3项目效果预测图程序设计...4项目模型架构...4项目模型描述及代码示例...5项目模型算法流程图...6项目目录结构设计及各模块功能说明...7项目部署她应用...8项目扩展...10项目应该注意事项...
- Python-玩转数据-凸优化
人猿宇宙
python数据挖掘人工智能
一、说明最优化问题目前在机器学习,数据挖掘等领域应用非常广泛,因为机器学习简单来说,主要做的就是优化问题,先初始化一下权重参数,然后利用优化方法来优化这个权重,直到准确率不再是上升,迭代停止,那到底什么是最优化问题呢?比如你要从上海去北京,你可以选择搭飞机,或者火车,动车,但只给你500块钱,要求你以最快的时间到达,其中到达的时间就是优化的目标,500块钱是限制条件,选择动车,火车,或者什么火车都
- 大模型的底层逻辑及Transformer架构
搏博
transformer架构深度学习机器学习人工智能
一、大模型的底层逻辑1.数据驱动大模型依赖海量的数据进行训练,数据的质量和数量直接影响模型的性能。通过大量的数据,模型能够学习到丰富的模式和规律,从而更好地处理各种任务。2.深度学习架构大模型基于深度学习技术,通常采用多层神经网络进行特征学习与抽象。其中,Transformer架构是目前主流的大模型架构,它通过自注意力机制和前馈神经网络来处理输入数据。这种架构能够高效地处理序列数据,如文本。3.自
- 【深度学习】权重衰减
熙曦Sakura
深度学习深度学习人工智能
权重衰减前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。我们总是可以通过去收集更多的训练数据来缓解过拟合。但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。回想一下,在多项式回归的例子中,我们可以通过调整拟合多项式的阶数来限制模型的容量。实际上,限制特征的数量是缓解过拟合的一种常用技
- AIGC从入门到实战:基于大模型的人工智能应用的涌现和爆发
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的新纪元:AIGC的崛起近年来,人工智能(AI)领域经历了前所未有的发展,其中AIGC(AIGeneratedContent,人工智能生成内容)的崛起尤为引人注目。AIGC借助深度学习模型,能够生成逼真的图像、视频、音频、文本等内容,为人类的创造力和生产力带来了革命性的改变。1.2大模型:AIGC的基石AIGC的核心驱动力在于大规模预训练模型(简称“大模型”)。这些模型拥
- python正则表达式简单入门_用Python实现简单的正则表达式NFA
weixin_39963440
python正则表达式简单入门
正则表达式(RegularExpression)即正则语言是现代计算机语言的重要基石,虽然原始,却非常强大。之所以写此文是因为去年看Udacity上面PeterNorvig的教程DesignofComputerPrograms时对编译方面的内容感到理解困难。该教程留了一份练习要求用上下文无关语法(Contex-FreeGrammar)和递归下降法(Recursive-DescendentParsi
- freerdp 解压安装_Windows环境下编译FreeRDP
weixin_39966130
freerdp解压安装
关于在Linux下如何编译FreeRDP,在github的wiki上面已经说的很明白了,而且相当简单,具体细节参考网址:FreeRDP构建说明。大抵就是make,makeinstall之类的,并且之前需要安装几个依赖库的。今天在Windows下尝试使用VS2008编译,遇到了几个问题,遂记录下来,希望可以帮助到后来人~如下便是细节:一、工具准备VirtualStudio2008,这个是必须要保证有
- freerdp 解压安装_FreeRDP的安装方法
weixin_39530509
freerdp解压安装
偶然在网上看到了FreeRDP,编译安装后,果然好用。文档是记录整个安装过程的,备忘!官方网站:http://www.freerdp.com/安装完后运行的命令是:xfreerdp192.168.1.101-uadministrator-p123功能说明(摘自百度快照):1、连接机器ip地址是192.168.1.101,2、登录远程机的账户密码是:-uadministrator-p1233、使用全
- 大语言模型应用指南:工作记忆与长短期记忆
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1问题的由来在人工智能的发展过程中,语言模型的研究一直是重要的一环。早期的语言模型,如N-gram,虽然在一定程度上能够捕捉语言的统计规律,但其无法有效处理语言中的长距离依赖性和复杂结构。这主要是因为N-gram模型只能捕捉到词汇之间的局部依赖关系,而无法捕捉到更长范围内的语义信息。1.2研究现状近年来,随着深度学习技术的发展,基于神经网络的语言模型逐渐崭露头角。其中,长短期记忆网
- 【 书生·浦语大模型实战营】学习笔记(一):全链路开源体系介绍
GoAI
深入浅出LLM深入浅出AI大模型书生人工智能LLMllama
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·浦语大模
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc