✨博客主页: 心荣~
✨系列专栏:【Java SE】
✨一句短话: 难在坚持,贵在坚持,成在坚持!
Java的反射(reflection)机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意方法和属性,既然能拿到那么,我们就可以修改部分类型信息;这种动态获取信息以及动态调用对象方法的功能称为java语言的反射(reflection)机制。
Java程序中许多对象在运行时会出现两种类型:运行时类型(RTTI)和编译时类型,例如Person p = new Student();这句代码中p在编译时类型为Person,运行时类型为Student。程序需要在运行时发现对象和类的真实 信心。而通过使用反射程序就能判断出该对象和类属于哪些类。
类名 | 用途 |
---|---|
Class类 | 代表类的实体,在运行的Java应用程序中表示类和接口 |
Field类 | 代表类的成员变量/类的属性 |
Method类 | 代表类的方法 |
Constructor类 | 代表类的构造方法 |
Class代表类的实体,在运行的Java应用程序中表示类和接口 ,Java文件被编译后,生成了.class
文件,JVM此时就要去加载.class
文件 ,被编译后的Java文件,也就是.class
文件会被JVM解析为一个对象,这个对象就是 java.lang.Class
。这样当程序在运行时,每个java文件就最终变成了Class类的一个实例。我们通过Java的反射机制应用到这个实例,就可以去获得甚至去添加改变Class对象所对应类的属性和动作, 使得这个类成 为一个动态的类 .
反射获取对象一共有三种方式:
下面我们演示使用三种方式得到的对象是否是同一个对象,我们来获取相关Student类的类信息对象。
Student类定义:
class Student{
//私有属性name
private String name = "rong";
//公有属性age
public int age = 18;
//不带参数的构造方法
public Student(){
System.out.println("Student()");
}
//带两个参数的构造方法
private Student(String name,int age) {
this.name = name;
this.age = age;
System.out.println("Student(String,name)");
}
private void eat(){
System.out.println("i am eating");
}
public void sleep(){
System.out.println("i am sleeping");
}
private void function(String str) {
System.out.println("私有方法function被调用:"+str);
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
}
获取对应类的Class对象:
public static void main(String[] args) {
//有3种方式可以获取Class对象
//1.通过对象的getClass()方法
Student student1 = new Student();
Class<?> c1 = student1.getClass();
//2、通过类名.class获取
Class<?> c2 = Student.class;
//3. forName(“路径”)
Class<?> c3 = null;
try {
c3 = Class.forName("Student");
} catch (ClassNotFoundException e) {
throw new RuntimeException(e);
}
System.out.println(c1.equals(c2));
System.out.println(c1.equals(c3));
System.out.println(c2.equals(c3));
}
执行结果:
通过结果发现, 三种方式获取到的对象是同一个.
方法 | 用途 |
---|---|
getClassLoader() | 获得类的加载器 |
getDeclaredClasses() | 返回一个数组,数组中包含该类中所有类和接口类的对象(包括私有的) |
forName(String className) | 根据类名返回类的对象 |
newInstance() | 创建类的实例 |
getName() | 获得类的完整路径名字 |
首先获取到Class对象,然后通过Class对象中的newInstance()方法创建实例对象 .
需要注意的是newInstance()方法的返回值的是一个泛型,在编译阶段会被擦除为Object,所以我们在接收的时候需要强制类型转换 .
public static void main(String[] args) {
//获取相关类的Class对象
Class<?> c = Student.class;
//使用newInstance方法创建实例
try {
//需要进行强转
Student student = (Student) c.newInstance();
System.out.println(student);
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
}
}
执行结果:
通过反射成功创建了Student类的实例。
方法 | 用途 |
---|---|
getConstructor(Class…> parameterTypes) | 获得该类中与参数类型匹配的公有构造方法 |
getConstructors() | 获得该类的所有公有构造方法 |
getDeclaredConstructor(Class…> parameterTypes) | 获得该类中与参数类型匹配的构造方法 |
getDeclaredConstructors() | 获得该类所有构造方法 |
使用反射获取实例对象中构造方法然后创建实例对象:
setAccessible
方法将访问权限开启。newInstance
方法获取对象。public static void main(String[] args) throws ClassNotFoundException {
//1.获取Clas对象
Class<?> c = Class.forName("Student");
//2.获取指定参数列表的构造器,演示获取Student中的一个私有构造器,参数传形参列表类型
try {
Constructor<?> constructor = c.getDeclaredConstructor(String.class, int.class);
//获取的私有构造方法,需要打开访问权限,默认关闭
constructor.setAccessible(true);
//3.根据获取到的构造器获取实例对象,使用newInstance方法,需要传入构造器需要的参数
Student student = (Student) constructor.newInstance("张三", 20);
System.out.println(student);
} catch (NoSuchMethodException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
}
}
运行结果:
获取到了私有的构造器,按照所传参数创建实例对象。
方法 | 用途 |
---|---|
getField(String name) | 获得某个公有的属性对象 |
getFields() | 获得所有公有的属性对象 |
getDeclaredField(String name) | 获得某个属性对象 |
getDeclaredFields() | 获得所有属性对象 |
通过如下过程修改一个对象的私有属性:
public static void main(String[] args) {
//1.获取Class对象
Class<?> c = Student.class;
try {
//2.通过反射创建实例对象
Student student = (Student) c.newInstance();
//3.获取私有属性name
Field field = c.getDeclaredField("name");
//4.给该私有属性开权限
field.setAccessible(true);
//5.修改该私有属性
field.set(student, "被反射修改的私有属性");
System.out.println(student);
} catch (NoSuchFieldException e) {
e.printStackTrace();
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
}
}
运行结果:
实例对象里面的私有属性name被修改了。
方法 | 用途 |
---|---|
getMethod(String name, Class…> parameterTypes) | 获得该类某个公有的方法 |
getMethods() | 获得该类所有公有的方法 |
getDeclaredMethod(String name, Class…> parameterTypes) | 获得该类某个方法 |
getDeclaredMethods() | 获得该类所有方法 |
通过如下过程获取Student对象中的私有方法function:
public static void main(String[] args) {
try {
//1.获取Class对象
Class<?> c = Class.forName("Student");
//2.获取Student的一个实例对象
Student student = (Student) c.newInstance();
//3.通过class对象获取实例的方法对象,参数为方法名,以及形参列表
Method method = c.getDeclaredMethod("function", String.class);
//4.为私有方法开访问权限
method.setAccessible(true);
//5.通过invork方法调用方法
method.invoke(student, "传入私有方法参数");
} catch (ClassNotFoundException e) {
e.printStackTrace();
} catch (NoSuchMethodException e) {
e.printStackTrace();
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
}
运行结果:
通过反射可以获取到实例对象的私有方法并进行调用。
方法 | 用途 |
---|---|
getAnnotation(Class annotationClass) | 返回该类中与参数类型匹配的公有注解对象 |
getAnnotations() | 返回该类所有的公有注解对象 |
getDeclaredAnnotation(Class annotationClass) | 返回该类中与参数类型匹配的所有注解对象 |
getDeclaredAnnotations() | 返回该类所有的注解对象 |
优点:
缺点:
枚举是在JDK1.5以后引入的; 关键字enum可以将一组具名的值的有限集合创建为一种新的类型,而这些具名的值可以作为常规的程序组件使用,这个新的类型就是枚举。
主要用途是:将一组常量组织起来,在这之前表示一组常量通常使用定义常量的方式:
public static int final RED = 1;
public static int final GREEN = 2;
public static int final BLACK = 3;
但是常量举例有不好的地方,例如:可能碰巧有个数字1,但是他有可能误会为是RED,现在我们可以直接用枚举来进行组织,这样一来,就拥有了类型,枚举类型。而不是普通的整形1.
下面是创建一个Color枚举类型 :
public enum Color {
RED,BLUE,GREEN,YELLOW,BLACK;
}
优点:将常量组织起来统一进行管理
场景:错误状态码,消息类型,颜色的划分,状态机等等…
本质:是 java.lang.Enum 的子类,也就是说,自己写的枚举类,就算没有显示的继承 Enum ,但是其默认继承了这个类。
switch语句中可以使用枚举来提高代码的可读性。
其实enum关键字组织的是一个特殊的类,里面包含一个或多个的枚举对象,下面定义的Color,其实里面包含了3个枚举对象,每个对象都是Color类型。
enum Color {
BLACK,YELLOW,GREEN;
}
public class Test {
public static void main(String[] args) {
Color color = Color.YELLOW;
switch (color) {
case BLACK:
System.out.println("BLACK");
break;
case YELLOW:
System.out.println("YELLOW");
break;
case GREEN:
System.out.println("GREEN");
break;
default:
break;
}
}
}
运行结果:
枚举中常用的方法如下:
方法名称 | 描述 |
---|---|
values() | 以数组形式返回枚举类型的所有成员 |
ordinal() | 获取枚举成员的索引位置 |
valueOf() | 将普通字符串转换为枚举实例 |
compareTo() | 比较两个枚举成员在定义时的顺序 |
关于Enum类源码中找不到values()方法的解释:
values方法,在编译前无法找到,这是因为enum声明实际上定义了一个类,我们可以通过定义的enum调用一些方法,Java编译器会自动在enum类型中插入一些方法,其中就包括values(),valueOf(),所以我们的程序在没编译的时候,就没办法查看到values()方法以及源码,这也是枚举的特殊性。
public enum Color {
BLACK,YELLOW,GREEN;
public static void main(String[] args) {
Color[] colors = Color.values();
for (Color c : colors) {
System.out.println(c);
}
}
}
运行结果:
public enum Color {
BLACK,YELLOW,GREEN;
public static void main(String[] args) {
Color color = Color.valueOf("BLACK");
System.out.println(color);
}
}
运行结果:
public enum Color {
BLACK,YELLOW,GREEN;
public static void main(String[] args) {
Color[] colors = Color.values();
for (Color c : colors) {
System.out.println(c + "的索引:" + c.ordinal());
}
}
}
运行结果:
public enum Color {
BLACK,YELLOW,GREEN;
public static void main(String[] args) {
System.out.println(Color.GREEN.compareTo(Color.YELLOW));
System.out.println(Color.BLACK.compareTo(Color.YELLOW));
}
}
运行结果:
上面的例子中enum本质上其实是一个特殊的类,默认继承了抽象类java.lang.Enum,里面包含了一个或多个枚举对象,并且这些枚举对象默认情况下都是通过无参数的构造方法构造的,
其实我们可以在枚举类中自定义属性方法以及构造方法,实现自定义枚举对象.
看下面的写法, 和上面的例子是一样的 , 只不过上面的写法是无参构造省略了 ( )
我们可以自己在枚举类中定义一些属性, 然后去写含有含有参数的构造方法, 实现自定义枚举;
注意 : 枚举中的构造方法必须(默认)是私有的, 且当我们写了含有参数的构造方法时, 编译器不会再提提供无参的构造方法 , 所以此时需要按照我们自己写的构造方法传入参数;
public enum Color {
BLACK("BLACK", 11, 1),
YELLOW("YELLOW", 12, 2),
GREEN("GREEN", 13, 3);
public String colorName;
public int colorId;
public int ordonal;
Color(String colorName, int colorId, int ordonal) {
this.colorName = colorName;
this.colorId = colorId;
this.ordonal = ordonal;
}
@Override
public String toString() {
return "Color{" +
"colorName='" + colorName + '\'' +
", colorId=" + colorId +
", ordonal=" + ordonal +
'}';
}
public static void main(String[] args) {
Color[] colors = Color.values();
for (Color c : colors) {
System.out.println(c);
}
}
}
运行结果:
首先看下面的代码, 我们想要从外部通过反射获取到枚举类:
public class Test {
public static void main(String[] args) {
//尝试获取枚举对象
Class<?> c = Color.class;
try {
//获取构造方法对象
Constructor<?> constructor = c.getDeclaredConstructor(String.class, int.class, int.class);
//开权限
constructor.setAccessible(true);
//通过构造方法构造对象
Color color = (Color) constructor.newInstance("蓝色", 88, 2);
System.out.println(color);
} catch (NoSuchMethodException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
}
}
}
运行结果:
结果中抛出一个java.lang.NoSuchMethodException: Color.
异常,表示没有找到我们给定参数列表的构造方法,但是我们枚举类中是定义过这个构造方法的,那么这里报错的原因是什么呢?
上面说过枚举类是默认继承抽象类java.lang.Enum的,所以要构造enum需要先帮助父类完成构造,但是枚举类与一般的类相比比较特殊,它不是使用super关键字进行显示地帮助父类构造,而是在编译后会多插入两个参数来帮助父类构造,也就是说,我们传参时要在原本所定义的构造方法参数列表基础上前面再添加String和int类型的两个参数
所以实际情况下,我们需要在反射获取构造器时,多写两个参数
Constructor<?> constructor = c.getDeclaredConstructor(String.class, int.class, String.class, int.class, int.class);
再次运行程序结果如下:
可以发现结果还是会抛出异常,但是此时抛的不是构造方法找不到的异常,而是枚举无法进行反射异常Exception in thread "main" java.lang.IllegalArgumentException: Cannot reflectively create enum objects
;
所以枚举对象是无法通过反射得到的, 这也就保证了枚举的安全性;
其实枚举无法通过反射获取到枚举对象是因为在**newInstance****()**中获取枚举对象时,会过滤掉枚举类型,如果遇到的是枚举类型就会抛出异常。
枚举的优点:
枚举的缺点:
要了解Lambda表达式,首先需要了解什么是函数式接口,函数式接口定义:一个接口有且只有一个抽象方法 。
注意:
@FunctionalInterface
注解,那么编译器就会按照函数式接口的定义来要求该接 口,这样如果有两个抽象方法,程序编译就会报错的。所以,从某种意义上来说,只要你保证你的接口中只有一个抽象方法,你可以不加这个注解。加上就会自动进行检测的。定义方式:
@FunctionalInterface
interface NoParameterNoReturn {
//注意:只能有一个方法
void test();
}
基于jdk1.8, 还以有如下定义:
@FunctionalInterface
interface NoParameterNoReturn {
void test();
default void test2() {
System.out.println("JDK1.8新特性,default默认方法可以有具体的实现");
}
}
Lambda表达式是Java SE 8中一个重要的新特性。lambda表达式允许你通过表达式来代替功能接口。 lambda表达 式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码 块)。 Lambda 表达式(Lambda expression),基于数学中的λ演算得名,也可称为闭包(Closure) 。
Lambda表达式的语法:
(parameters) -> expression 或 (parameters) ->{ statements; }
Lambda表达式由三部分组成:
常用的lambda表达式格式:
// 1. 不需要参数,返回值为 2
() -> 2
// 2. 接收一个参数(数字类型),返回其2倍的值
x -> 2 * x
// 3. 接受2个参数(数字),并返回他们的和
(x, y) -> x + y
// 4. 接收2个int型整数,返回他们的乘积
(int x, int y) -> x * y
// 5. 接受一个 string 对象,并在控制台打印,不返回任何值(看起来像是返回void)
(String s) -> System.out.print(s)
以下面这些接口为例:
//无返回值无参数
@FunctionalInterface
interface NoParameterNoReturn {
void test();
}
//无返回值一个参数
@FunctionalInterface
interface OneParameterNoReturn {
void test(int a);
}
//无返回值多个参数
@FunctionalInterface
interface MoreParameterNoReturn {
void test(int a,int b);
}
//有返回值无参数
@FunctionalInterface
interface NoParameterReturn {
int test();
}
//有返回值一个参数
@FunctionalInterface
interface OneParameterReturn {
int test(int a);
}
//有返回值多参数
@FunctionalInterface
interface MoreParameterReturn {
int test(int a,int b);
}
实现接口最原始的方式就是定义一个类去重写对应的方法,其次更简便的方式就是使用匿名内部类去实现接口;
public class TestDemo {
public static void main(String[] args) {
NoParameterNoReturn noParameterNoReturn = new NoParameterNoReturn(){
@Override
public void test() {
System.out.println("hello");
}
};
noParameterNoReturn.test();
}
}
那么这里使用lambda表达式, 可以进一步进行简化;
public class TestDemo {
public static void main(String[] args) {
NoParameterNoReturn noParameterNoReturn = ()->{
System.out.println("无参数无返回值");
};
noParameterNoReturn.test();
OneParameterNoReturn oneParameterNoReturn = (int a)->{
System.out.println("一个参数无返回值:"+ a);
};
oneParameterNoReturn.test(10);
MoreParameterNoReturn moreParameterNoReturn = (int a,int b)->{
System.out.println("多个参数无返回值:"+a+" "+b);
};
moreParameterNoReturn.test(20,30);
NoParameterReturn noParameterReturn = ()->{
System.out.println("有返回值无参数!");
return 40;
};
//接收函数的返回值
int ret = noParameterReturn.test();
System.out.println(ret);
OneParameterReturn oneParameterReturn = (int a)->{System.out.println("有返回值有一个参数!");
return a;
};
ret = oneParameterReturn.test(50);
System.out.println(ret);
MoreParameterReturn moreParameterReturn = (int a,int b)->{
System.out.println("有返回值多个参数!");
return a+b;
};
ret = moreParameterReturn.test(60,70);
System.out.println(ret);
}
}
上面的的代码根据开头的省略规则还可以进一步省略, 如下:
public class TestDemo {
public static void main(String[] args) {
NoParameterNoReturn noParameterNoReturn
= ()->System.out.println("无参数无返回值");
noParameterNoReturn.test();
OneParameterNoReturn oneParameterNoReturn
= a-> System.out.println("一个参数无返回值:"+ a);
oneParameterNoReturn.test(10);
MoreParameterNoReturn moreParameterNoReturn
= (a,b)-> System.out.println("多个参数无返回值:"+a+" "+b);
moreParameterNoReturn.test(20,30);
//有返回值无参数!
NoParameterReturn noParameterReturn = ()->40;
int ret = noParameterReturn.test();
System.out.println(ret);
//有返回值有一个参数!
OneParameterReturn oneParameterReturn = a->a;
ret = oneParameterReturn.test(50);
System.out.println(ret);
//有返回值多个参数!
MoreParameterReturn moreParameterReturn = (a,b)->a+b;
ret = moreParameterReturn.test(60,70);
System.out.println(ret);
}
}
还有一种写法更加简洁, 但可读性就… , 比如:
OneParameterNoReturn oneParameterNoReturn = a-> System.out.println(a);
可以简化成下面的样子, 看不太懂了…
OneParameterNoReturn oneParameterNoReturn = System.out::println;
Lambda 表达式中存在变量捕获 ,了解了变量捕获之后,我们才能更好的理解Lambda 表达式的作用域 。
在匿名内部类中,只能捕获到常量,或者没有发生修改的变量,因为lambda本质也是实现函数式接口,所以lambda也满足此变量捕获的规则。
下面的代码捕获的变量num未修改, 程序可以正常编译和运行;
当捕获的变量num是修改过的, 则会报错;
注意:Collection的forEach()方 法是从接口 java.lang.Iterable 拿过来的。
forEach方法需要传递的参数是Consumer super E> action,这个参数也是一个函数式接口,需要重写里面的accept方法。
使用匿名内部类,accept中的t参数表示集合中迭代出的元素,我们可以对该元素设定操作, 这里重写的方法只做输出操作;
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
list.add("欣");
list.add("欣");
list.add("向");
list.add("荣");
list.forEach(new Consumer<String>(){
@Override
public void accept(String str){
//简单遍历集合中的元素。
System.out.print(str+" ");
}
});
}
执行结果:
我们可以将上面的匿名内部类使用lambda表示,它只有一个参数没有返回值,上面的代码变为
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
list.add("欣");
list.add("欣");
list.add("向");
list.add("荣");
list.forEach(s -> System.out.print(s + " "));
}
map中的forEach方法和前面Collection中的forEach方法的使用其实都差不多,换了一个参数而已,这个参数BiConsumer super K, ? super V> action同样是一个函数式接口,我们需要传入一个实现该接口的实现类。
使用匿名内部类:
public static void main(String[] args) {
Map<Integer, String> map = new HashMap<>();
map.put(1, "欣");
map.put(2, "欣");
map.put(3, "向");
map.put(4, "荣");
map.forEach(new BiConsumer<Integer, String>(){
@Override
public void accept(Integer k, String v){
System.out.println(k + "=" + v);
}
});
}
运行结果:
同样的对上面代码可以使用lambda表达式来实现,这是一个含有两个参数无返回值的函数式接口,上面的代码改为:
public static void main(String[] args) {
Map<Integer, String> map = new HashMap<>();
map.put(1, "欣");
map.put(2, "欣");
map.put(3, "向");
map.put(4, "荣");
map.forEach((k,v)-> System.out.println(k + "=" + v));
}
大部分接口中的sort方法,默认都是按照升序的方式进行排序,如果需要对自定义类进行排序或者实现自定义规则的排序,需要额外传入一个Comparator的实现类对象(比较器) ; 这里以List集合中的sort方法为例 .
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
list.add("aaaa");
list.add("bbb");
list.add("cc");
list.add("d");
list.sort(new Comparator<String>() {
@Override
public int compare(String str1, String str2){
//注意这里比较的是长度
return str1.length()-str2.length();
}
});
System.out.println(list);
}
运行结果:
同样的对上面代码可以使用lambda表达式来实现,这是一个含有两个参数有返回值的函数式接口,上面的代码改为:
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
list.add("aaaa");
list.add("bbb");
list.add("cc");
list.add("d");
//调用带有2个参数的方法,且返回长度的差值
list.sort((str1,str2)-> str1.length()-str2.length());
System.out.println(list);
}
Lambda表达式的优点很明显,在代码层次上来说,使代码变得非常的简洁。缺点也很明显,代码不易读。