本文为 数据结构基础【树】 相关知识,下边将对树的定义与相关概念
,二叉树的定义、特点与性质
,二叉树的存储结构
,二叉树的遍历
,二叉查找树
,平衡二叉树
,红黑树
,B-树与B+树
等进行详尽介绍~
博主主页:´Code_Wang的主页
Java全栈学习路线可参考:【Java全栈学习路线】最全的Java学习路线及知识清单,Java自学方向指引,内含最全Java全栈学习技术清单~
算法刷题路线可参考:算法刷题路线总结与相关资料分享,内含最详尽的算法刷题路线指南及相关资料分享~
树(Tree) 是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:
树的定义还需要强调以下两点:
由树的定义可以看出,树的定义使用了递归的方式。
结点子树的根结点为该结点的孩子结点。相应该结点称为孩子结点的双亲结点(父节点)。 如上图中,A为B的双亲结点,B为A的孩子结点。 同一个双亲结点的孩子结点之间互称兄弟结点。 上图中,结点B与结点C互为兄弟结点。
从根开始定义起,根为第一层,根的孩子为第二层,以此类推。下图表示了树的层次关系。
树中结点的最大层次数称为树的深度或高度。上图所示的树的深度为4。
二叉树 是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。
由二叉树定义以及图示分析得出二叉树有以下特点:
斜树: 所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。
满二叉树: 在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
满二叉树的特点:
完全二叉树: 对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。
完全二叉树的特点:
(1)叶子结点只能出现在最下层和次下层。
(2)最下层的叶子结点集中在树的左部。
(3)倒数第二层若存在叶子结点,一定在右部连续位置。
(4)如果结点度为1,则该结点只有左孩子,即没有右子树。
(5)同样结点数目的二叉树,完全二叉树深度最小。
(6)注:满二叉树一定是完全二叉树,但反过来不一定成立。
(1)顺序存储
二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。
一棵完全二叉树采用顺序存储方式,如下图表示:
由图可以看出,当二叉树为完全二叉树时,结点数刚好填满数组。 那么当二叉树不为完全二叉树时,采用顺序存储形式如何呢?(其中浅色结点表示结点不存在。)
其中,∧表示数组中此位置没有存储结点。此时可以发现,顺序存储结构中已经出现了空间浪费的情况。 那么对于右斜树极端情况对应的顺序存储结构如下图所示:
可以看出,对于这种右斜树极端情况,采用顺序存储的方式是十分浪费空间的。因此,顺序存储一般适用于完全二叉树。
(2)二叉链表
既然顺序存储不能满足二叉树的存储需求,那么考虑采用链式存储。由二叉树定义可知,二叉树的每个结点最多有两个孩子。因此,可以将结点数据结构定义为一个数据和两个指针域。表示方式如下图所示:
定义结点的代码如下:
//定义树节点
public static class TreeNode{
int val;
TreeNode leftchild;
TreeNode rightchild;
public TreeNode(int data){
this.val = data;
}
}
对于一颗二叉树可以采用一种链表结构存储二叉树,这种链表称为二叉链表。
二叉树的遍历是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。 二叉树的访问次序可以分为四种(以下边这棵树为例):
(1)前序遍历
前序遍历 通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。
上图所示二叉树的先序遍历的结果: ABDHIEJCFG
(2)中序遍历
中序遍历 就是从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左再向右的方向访问。
上图所示二叉树的先序遍历的结果: HDIBJEAFCG
(3)后序遍历
后序遍历 就是从二叉树的根结点出发,当第三次到达结点时就输出结点数据,按照先向左再向右的方向访问。
上图所示二叉树的先序遍历的结果: HIDJEBFGCA
(4)层次遍历
层次遍历 就是按照树的层次自上而下的遍历二叉树。
上图所示二叉树的层次遍历的结果: ABCDEFGHIJ
递归方式实现前序、中序、后序遍历代码:
public class RecursiveBinaryTree {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int v) {
value = v;
}
}
// 先序打印所有节点
public static void Preorder(Node root) {
if (root == null) {
return;
}
System.out.println(root.value);
Preorder(root.left);
Preorder(root.right);
}
public static void Inorder(Node root) {
if (root == null) {
return;
}
Inorder(root.left);
System.out.println(root.value);
Inorder(root.right);
}
public static void Postorder(Node root) {
if (root == null) {
return;
}
Postorder(root.left);
Postorder(root.right);
System.out.println(root.value);
}
public static void main(String[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
Preorder(root);
System.out.println("====先序遍历====");
Inorder(root);
System.out.println("====中序遍历====");
Postorder(root);
System.out.println("====后续遍历====");
}
}
用栈实现先序遍历比递归方式效率高一点:
public class UnRecursiveBinaryTree {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int v) {
value = v;
}
}
public static void pre(Node head) {
System.out.print("pre-order: ");
if (head != null) {
Stack<Node> stack = new Stack<Node>();
stack.add(head);
while (!stack.isEmpty()) {
head = stack.pop();
System.out.print(head.value + " ");
if (head.right != null) {
stack.push(head.right);
}
if (head.left != null) {
stack.push(head.left);
}
}
}
System.out.println();
}
}
二叉查找树,又叫做二叉搜索树,二叉排序树。
二叉查找树的特征:
二叉排序树查找操作:
首先我们提供一个二叉树的结构,然后我们来看看二叉排序树的查找是如何实现的。
public class BinaryTree {
public static void main(String[] args) {
// 主要是表达查询,所以手动构造一棵二叉排序树
TreeNode binaryTree1 = new TreeNode();
binaryTree1.data = 62;
TreeNode binaryTree2 = new TreeNode();
binaryTree1.lchild = binaryTree2;
binaryTree2.data = 58;
TreeNode binaryTree3 = new TreeNode();
binaryTree2.lchild = binaryTree3;
binaryTree3.data = 47;
TreeNode binaryTree4 = new TreeNode();
binaryTree3.lchild = binaryTree4;
binaryTree4.data = 35;
TreeNode binaryTree5 = new TreeNode();
binaryTree4.rchild = binaryTree5;
binaryTree5.data = 37;
TreeNode binaryTree6 = new TreeNode();
binaryTree3.rchild = binaryTree6;
binaryTree6.data = 51;
TreeNode binaryTree7 = new TreeNode();
binaryTree1.rchild = binaryTree7;
binaryTree7.data = 88;
TreeNode binaryTree8 = new TreeNode();
binaryTree7.lchild = binaryTree8;
binaryTree8.data = 73;
TreeNode binaryTree9 = new TreeNode();
binaryTree7.rchild = binaryTree9;
binaryTree9.data = 99;
TreeNode binaryTree10 = new TreeNode();
binaryTree9.lchild = binaryTree10;
binaryTree10.data = 93;
TreeNode treeNode = serachBinaryTree(binaryTree1, 35000);
System.out.println(treeNode == null ? "没有这个数" : treeNode.data);
}
/**
* 二叉排序树
*
* @param root
* 待查询的二叉排序树
* @param target
* 查找关键字
* @return 没有返回null,有则返回节点
*/
public static TreeNode searchBinaryTree(TreeNode root, int target) {
if (root == null) { // 树节点不存在,返回
return null;
} else if (target == root.data) { // 查找成功
return root;
} else if (target < root.data) { // 关键字小于根节点查找左子树
return searchBinaryTree(root.lchild, target);
} else { // 关键字大于根节点查找右子树
return searchBinaryTree(root.rchild, target);
}
}
/**
* 二叉树,数据结构
*
*/
private static class TreeNode {
int data;
TreeNode lchild;
TreeNode rchild;
}
}
含有相同节点的二叉查找树可以有不同的形态,而二叉查找树的平均查找长度与树的深度有关,所以需要找出一个查找平均长度最小的一棵,那就是平衡二叉树(如下图),具有以下性质:
红黑树是一种自平衡二叉树,在平衡二叉树的基础上每个节点又增加了一个颜色的属性,节点的颜色只能是红色或黑色。具有以下性质:
B-树是一种平衡多路查找树,它在文件系统中很有用。一棵m阶B-树,具有下列性质:
B+树是B-树的一种变形,它与B-树的差别在于(如下图为3阶B+树):
Java全栈学习路线可参考:【Java全栈学习路线】最全的Java学习路线及知识清单,Java自学方向指引,内含最全Java全栈学习技术清单~
算法刷题路线可参考:算法刷题路线总结与相关资料分享,内含最详尽的算法刷题路线指南及相关资料分享~