Pytorch实战1:LeNet手写数字识别 (MNIST数据集)
发布时间:2018-04-26 10:57,
浏览次数:935
, 标签:
Pytorch
LeNet
MNIST
版权说明:此文章为本人原创内容,转载请注明出处,谢谢合作!
Pytorch实战1:LeNet手写数字识别 (MNIST数据集)
实验环境:
* Pytorch 0.4.0
* torchvision 0.2.1
* Python 3.6
* CUDA8+cuDNN v7 (可选)
* Win10+Pycharm
Pytorch 0.4.0版本说明
Pyotrch 0.4.0已经支持Windows用户了,其中有多项重大更新
,主要包括Tensor/Variable
合并,新增device-agnostic code等等。建议大家安装最新版
Pytorch,后面的代码都是基于最新版的,使用老版Pytorch可能会报错。
LeNet网络结构:
网络参数:
layer name kernel size output size
输入层 \ 32x32
卷积层1 5x5 6x28x28
MaxPool1 2x2, stride=2 6x14x14
卷积层2 5x5 16x10x10
MaxPool2 2x2, stride=2 16x5x5
全连接层1 16x5x5 120
全连接层2 120 84
输出层 84 10
Pytorch训练代码:
使用的数据集是MNIST,其中包括6万张28x28的训练样本,1万张测试样本。
import torch import torchvision as tv import torchvision.transforms as
transformsimport torch.nn as nn import torch.optim as optim import argparse #
定义是否使用GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定义网络结构 class LeNet(nn.Module): def __init__(self): super(LeNet,
self).__init__() self.conv1 = nn.Sequential(#input_size=(1*28*28) nn.Conv2d(1, 6
,5, 1, 2), #padding=2保证输入输出尺寸相同 nn.ReLU(), #input_size=(6*28*28)
nn.MaxPool2d(kernel_size=2, stride=2),#output_size=(6*14*14) ) self.conv2 =
nn.Sequential( nn.Conv2d(6, 16, 5), nn.ReLU(), #input_size=(16*10*10)
nn.MaxPool2d(2, 2) #output_size=(16*5*5) ) self.fc1 = nn.Sequential( nn.Linear(
16 * 5 * 5, 120), nn.ReLU() ) self.fc2 = nn.Sequential( nn.Linear(120, 84),
nn.ReLU() ) self.fc3 = nn.Linear(84, 10) # 定义前向传播过程,输入为x def forward(self, x):
x = self.conv1(x) x = self.conv2(x)#
nn.Linear()的输入输出都是维度为一的值,所以要把多维度的tensor展平成一维 x = x.view(x.size()[0], -1) x =
self.fc1(x) x = self.fc2(x) x = self.fc3(x)return x
#使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多 parser = argparse.ArgumentParser()
parser.add_argument('--outf', default='./model/', help='folder to output images
and model checkpoints') #模型保存路径 parser.add_argument('--net', default=
'./model/net.pth', help="path to netG (to continue training)") #模型加载路径 opt =
parser.parse_args()# 超参数设置 EPOCH = 8 #遍历数据集次数 BATCH_SIZE = 64 #批处理尺寸(batch_size)
LR =0.001 #学习率 # 定义数据预处理方式 transform = transforms.ToTensor() # 定义训练数据集
trainset = tv.datasets.MNIST( root='./data/', train=True, download=True,
transform=transform)# 定义训练批处理数据 trainloader = torch.utils.data.DataLoader(
trainset, batch_size=BATCH_SIZE, shuffle=True, ) # 定义测试数据集 testset =
tv.datasets.MNIST( root='./data/', train=False, download=True,
transform=transform)# 定义测试批处理数据 testloader = torch.utils.data.DataLoader(
testset, batch_size=BATCH_SIZE, shuffle=False, ) # 定义损失函数loss function
和优化方式(采用SGD) net = LeNet().to(device) criterion = nn.CrossEntropyLoss() #
交叉熵损失函数,通常用于多分类问题上 optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)
# 训练 if __name__ == "__main__": for epoch in range(EPOCH): sum_loss = 0.0 # 数据读取
for i, data in enumerate(trainloader): inputs, labels = data inputs, labels =
inputs.to(device), labels.to(device)# 梯度清零 optimizer.zero_grad() # forward +
backward outputs = net(inputs) loss = criterion(outputs, labels)
loss.backward() optimizer.step()# 每训练100个batch打印一次平均loss sum_loss += loss.item()
if i % 100 == 99: print('[%d, %d] loss: %.03f' % (epoch + 1, i + 1, sum_loss /
100)) sum_loss = 0.0 # 每跑完一次epoch测试一下准确率 with torch.no_grad(): correct = 0
total =0 for data in testloader: images, labels = data images, labels =
images.to(device), labels.to(device) outputs = net(images)# 取得分最高的那个类 _,
predicted = torch.max(outputs.data,1) total += labels.size(0) correct +=
(predicted == labels).sum() print('第%d个epoch的识别准确率为:%d%%' % (epoch + 1, (100 *
correct / total))) torch.save(net.state_dict(),'%s/net_%03d.pth' % (opt.outf,
epoch +1))
实验结果: