Elasticsearch:Top metrics 聚合

top_metrics 聚合从文档中选择具有最大或最小排序值的 metrics。 例如,这会获取文档中 s 字段的最大值所对应的 m 字段的值:

POST /test/_bulk?refresh
{"index":{}}
{"s":1,"m":3.1415}
{"index":{}}
{"s":2,"m":1}
{"index":{}}
{"s":3,"m":2.71828}


POST /test/_search?filter_path=aggregations
{
  "aggs": {
    "tm": {
      "top_metrics": {
        "metrics": {
          "field": "m"
        },
        "sort": {
          "s": "desc"
        }
      }
    }
  }
}

上面的聚合返回的结果是:

{
  "aggregations": {
    "tm": {
      "top": [
        {
          "sort": [
            3
          ],
          "metrics": {
            "m": 2.718280076980591
          }
        }
      ]
    }
  }
}

s 字段的最大值为 3,而它对应的 m 值为 2.718280076980591。

top_metrics 在本质上与 top_hits 非常相似,但由于它受到更多限制,它能够使用更少的内存来完成它的工作,并且通常更快。

sort

metric 请求中的 sort 字段的功能与 search 请求中的 sort 字段完全相同,除了:

  • 它不能用于 binary、flattened、ip、keyword 或 text 字段。
  • 它仅支持单个排序值,因此未指定哪个文档胜出。

聚合返回的 metric 是搜索请求将返回的第一个命中。 所以,

"sort": {"s": "desc"}

        从具有最大 s 值的文档中获取 metric

"sort": {"s": "asc"}

        从具有最小 s 值的文档中获取 metric

"sort": {"_geo_distance": {"location": "POINT (-78.6382 35.7796)"}}

        位置最接近 35.7796, -78.6382 的文档中获取 metric

"sort": "_score"

        从得分最高的文档中获取 metric

metrics

metrics 选择要返回的 top 文档的字段。 你可以通过请求像 "metrics": [{"field": "m"} 或者以 "metrics": [{"field": "m"}, {"field": "i"} 的形式请求多个 metrics。metrics.field 支持如下的字段类型:

  • boolean
  • ip
  • keywords
  • numbers

除 keywords 外,还支持对应类型的运行时字段(runtime fields)。 metrics.field 不支持具有数组值的字段。 数组值的 top_metric 聚合可能会返回不一致的结果。

以下示例对几种字段类型运行 top_metrics 聚合。

DELETE test
PUT /test
{
  "mappings": {
    "properties": {
      "d": {
        "type": "date"
      }
    }
  }
}
POST /test/_bulk?refresh
{"index":{}}
{"s":1,"m":3.1415,"i":1,"d":"2020-01-01T00:12:12Z","t":"cat"}
{"index":{}}
{"s":2,"m":1,"i":6,"d":"2020-01-02T00:12:12Z","t":"dog"}
{"index":{}}
{"s":3,"m":2.71828,"i":-12,"d":"2019-12-31T00:12:12Z","t":"chicken"}
POST /test/_search?filter_path=aggregations
{
  "aggs": {
    "tm": {
      "top_metrics": {
        "metrics": [
          {"field": "m"},
          {"field": "i"},
          {"field": "d"},
          {"field": "t.keyword"}
        ],
        "sort": {"s": "desc"}
      }
    }
  }
}

上面的聚合返回结果:

{
  "aggregations": {
    "tm": {
      "top": [
        {
          "sort": [
            3
          ],
          "metrics": {
            "m": 2.718280076980591,
            "i": -12,
            "d": "2019-12-31T00:12:12.000Z",
            "t.keyword": "chicken"
          }
        }
      ]
    }
  }
}

size

top_metrics 可以使用 size 参数返回前几个文档的 metrics 值:

DELETE test
POST /test/_bulk?refresh
{"index": {}}
{"s": 1, "m": 3.1415}
{"index": {}}
{"s": 2, "m": 1.0}
{"index": {}}
{"s": 3, "m": 2.71828}
POST /test/_search?filter_path=aggregations
{
  "aggs": {
    "tm": {
      "top_metrics": {
        "metrics": {
          "field": "m"
        },
        "sort": {
          "s": "desc"
        },
        "size": 3
      }
    }
  }
}

上面的聚合返回:

{
  "aggregations": {
    "tm": {
      "top": [
        {
          "sort": [
            3
          ],
          "metrics": {
            "m": 2.718280076980591
          }
        },
        {
          "sort": [
            2
          ],
          "metrics": {
            "m": 1
          }
        },
        {
          "sort": [
            1
          ],
          "metrics": {
            "m": 3.1414999961853027
          }
        }
      ]
    }
  }
}

默认大小为 1。最大默认大小为 10,因为聚合的工作存储是“密集”的,这意味着我们为每个存储桶分配大小槽。 10 是一个非常保守的默认最大值,如果需要,可以通过更改 top_metrics_max_size 索引设置来提高它。 但是要知道,大尺寸可能会占用相当多的内存,特别是如果它们位于聚合内部,这会使许多存储桶像大 terms aggregation 一样。 如果你想提高它,请使用以下内容:

PUT /test/_settings
{
  "top_metrics_max_size": 100
}

注意:如果 size 大于 1,则 top_metrics 聚合不能成为排序的目标。

示例

和 terms 一起使用

这种聚合在 terms 聚合中应该非常有用,例如,查找每个服务器报告的最后一个值。

PUT /node
{
  "mappings": {
    "properties": {
      "ip": {"type": "ip"},
      "date": {"type": "date"}
    }
  }
}
POST /node/_bulk?refresh
{"index":{}}
{"ip":"192.168.0.1","date":"2020-01-01T01:01:01","m":1}
{"index":{}}
{"ip":"192.168.0.1","date":"2020-01-01T02:01:01","m":2}
{"index":{}}
{"ip":"192.168.0.2","date":"2020-01-01T02:01:01","m":3}
POST /node/_search?filter_path=aggregations
{
  "aggs": {
    "ip": {
      "terms": {
        "field": "ip"
      },
      "aggs": {
        "tm": {
          "top_metrics": {
            "metrics": {
              "field": "m"
            },
            "sort": {
              "date": "desc"
            }
          }
        }
      }
    }
  }
}

上面的聚合返回:

{
  "aggregations": {
    "ip": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "192.168.0.1",
          "doc_count": 2,
          "tm": {
            "top": [
              {
                "sort": [
                  "2020-01-01T02:01:01.000Z"
                ],
                "metrics": {
                  "m": 2
                }
              }
            ]
          }
        },
        {
          "key": "192.168.0.2",
          "doc_count": 1,
          "tm": {
            "top": [
              {
                "sort": [
                  "2020-01-01T02:01:01.000Z"
                ],
                "metrics": {
                  "m": 3
                }
              }
            ]
          }
        }
      ]
    }
  }
}

与 top_hits 不同,你可以按此指标的结果对存储桶进行排序:

POST /node/_search?filter_path=aggregations
{
  "aggs": {
    "ip": {
      "terms": {
        "field": "ip",
        "order": {"tm.m": "desc"}
      },
      "aggs": {
        "tm": {
          "top_metrics": {
            "metrics": {"field": "m"},
            "sort": {"date": "desc"}
          }
        }
      }
    }
  }
}

上面的结果显示:

{
  "aggregations": {
    "ip": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "192.168.0.2",
          "doc_count": 1,
          "tm": {
            "top": [
              {
                "sort": [
                  "2020-01-01T02:01:01.000Z"
                ],
                "metrics": {
                  "m": 3
                }
              }
            ]
          }
        },
        {
          "key": "192.168.0.1",
          "doc_count": 2,
          "tm": {
            "top": [
              {
                "sort": [
                  "2020-01-01T02:01:01.000Z"
                ],
                "metrics": {
                  "m": 2
                }
              }
            ]
          }
        }
      ]
    }
  }
}

混合排序类型

按跨不同索引的不同类型的字段对 top_metrics 进行排序会产生一些令人惊讶的结果:浮点字段总是独立于整数字段进行排序。

DELETE test
POST /test/_bulk?refresh
{"index":{"_index":"test1"}}
{"s":1,"m":3.1415}
{"index":{"_index":"test1"}}
{"s":2,"m":1}
{"index":{"_index":"test2"}}
{"s":3.1,"m":2.71828}
POST /test*/_search?filter_path=aggregations
{
  "aggs": {
    "tm": {
      "top_metrics": {
        "metrics": {
          "field": "m"
        },
        "sort": {
          "s": "asc"
        }
      }
    }
  }
}

上面的聚合返回结果:

{
  "aggregations": {
    "tm": {
      "top": [
        {
          "sort": [
            3.0999999046325684
          ],
          "metrics": {
            "m": 2.718280076980591
          }
        }
      ]
    }
  }
}

虽然这比错误要好,但它可能不是你想要的。 虽然它确实会丢失一些精度,但你可以使用以下方式将整数字段显式转换为浮点数:

POST /test*/_search?filter_path=aggregations
{
  "aggs": {
    "tm": {
      "top_metrics": {
        "metrics": {
          "field": "m"
        },
        "sort": {
          "s": {
            "order": "asc",
            "numeric_type": "double"
          }
        }
      }
    }
  }
}

上面的聚合结果显示:

{
  "aggregations": {
    "tm": {
      "top": [
        {
          "sort": [
            1
          ],
          "metrics": {
            "m": 3.1414999961853027
          }
        }
      ]
    }
  }
}

参考:

【1】Top metrics aggregation | Elasticsearch Guide [8.4] | Elastic

你可能感兴趣的:(Elasticsearch,Elastic,elasticsearch,大数据,搜索引擎,全文检索,big,data)