卷积神经网络超详细介绍,卷积神经网络百度百科

卷积神经网络超详细介绍,卷积神经网络百度百科_第1张图片

卷积神经网络通俗理解

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络。

谷歌人工智能写作项目:小发猫

卷积神经网络工作原理直观的解释?

其实道理很简单,因为卷积运算,从频域角度看,是频谱相乘所以图像跟卷积核做卷积时,两者频谱不重叠的部分相乘,自然是0,那图像这部分频率的信息就被卷积核过滤了常见的神经网络结构

而图像,本质上就是二维离散的信号,像素点值的大小代表该位置的振幅,所以图像包含了一系列频率的特征。比如图像边缘部分,像素值差别大,属于高频信号,背景部分,像素值差别小,是低频信号。

所以如果卷积核具有『高通』性质,就能起到提取图像边缘的作用,低通则有模糊的效果。所以,卷积神经网络的牛逼之处在于通过卷积层的不同卷积核,提取图像不同频段的特征;以及通过池化层,提取不同粒度的特征。

深度学习中的卷积网络到底怎么回事

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

如何更好的理解分析深度卷积神经网络

作者:杨延生链接:来源:知乎著作权归作者所有,转载请联系作者获得授权。"深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的新的结构和新的方法。

新的网络结构中最著名的就是CNN,它解决了传统较深的网络参数太多,很难训练的问题,使用了逗局部感受野地和逗权植共享地的概念,大大减少了网络参数的数量。

关键是这种结构确实很符合视觉类任务在人脑上的工作原理。新的结构还包括了:LSTM,ResNet等。

新的方法就多了:新的激活函数:ReLU,新的权重初始化方法(逐层初始化,XAVIER等),新的损失函数,新的防止过拟合方法(Dropout,BN等)。

这些方面主要都是为了解决传统的多层神经网络的一些不足:梯度消失,过拟合等。

----------------------下面是原答案------------------------从广义上说深度学习的网络结构也是多层神经网络的一种。

传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。

而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。

具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。

输入层-卷积层-降维层-卷积层-降维层--....--隐藏层-输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是信号->特征->值。

特征是由网络自己选择。

卷积神经网络 有哪些改进的地方

卷积神经网络的研究的最新进展引发了人们完善立体匹配重建热情。从概念看,基于学习算法能够捕获全局的语义信息,比如基于高光和反射的先验条件,便于得到更加稳健的匹配。

目前已经探求一些两视图立体匹配,用神经网络替换手工设计的相似性度量或正则化方法。这些方法展现出更好的结果,并且逐步超过立体匹配领域的传统方法。

事实上,立体匹配任务完全适合使用CNN,因为图像对是已经过修正过的,因此立体匹配问题转化为水平方向上逐像素的视差估计。

与双目立体匹配不同的是,MVS的输入是任意数目的视图,这是深度学习方法需要解决的一个棘手的问题。

而且只有很少的工作意识到该问题,比如SurfaceNet事先重建彩色体素立方体,将所有像素的颜色信息和相机参数构成一个3D代价体,所构成的3D代价体即为网络的输入。

然而受限于3D代价体巨大的内存消耗,SurfaceNet网络的规模很难增大:SurfaceNet运用了一个启发式的“分而治之”的策略,对于大规模重建场景则需要花费很长的时间。

如何理解卷积神经网络中的卷积

怎样通俗易懂地解释卷积?

对卷积的意义的理解:从“积”的过程可以看到,我们得到的叠加值,是个全局的概念。

以信号分析为例,卷积的结果是不仅跟当前时刻输入信号的响应值有关,也跟过去所有时刻输入信号的响应都有关系,考虑了对过去的所有输入的效果的累积。

在图像处理的中,卷积处理的结果,其实就是把每个像素周边的,甚至是整个图像的像素都考虑进来,对当前像素进行某种加权处理。

所以说,“积”是全局概念,或者说是一种“混合”,把两个函数在时间或者空间上进行混合。那为什么要进行“卷”?直接相乘不好吗?

我的理解,进行“卷”(翻转)的目的其实是施加一种约束,它指定了在“积”的时候以什么为参照。

在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。例1:信号分析如下图所示,输入信号是f(t),是随时间变化的。

系统响应函数是g(t),图中的响应函数是随时间指数下降的,它的物理意义是说:如果在t=0的时刻有一个输入,那么随着时间的流逝,这个输入将不断衰减。

换言之,到了t=T时刻,原来在t=0时刻的输入f(0)的值将衰减为f(0)g(T)。

你可能感兴趣的:(cnn,百度,深度学习)