轻松搭建Yolov5 GPU运行环境

转载请注明出处 2022年5月21日 @家有一亩三分地

轻松搭建Yolov5 GPU运行环境

      • 下载yolov5程序
      • conda 配置环境
      • 安装yolov5 依赖库
      • 测试

下载yolov5程序

https://github.com/ultralytics/yolov5.git

PS D:\ptwork\git> git clone https://github.com/ultralytics/yolov5.git
Cloning into 'yolov5'...
remote: Enumerating objects: 13641, done.
remote: Counting objects: 100% (165/165), done.
remote: Compressing objects: 100% (75/75), done.
remote: Total 13641 (delta 114), reused 131 (delta 90), pack-reused 13476
Receiving objects: 100% (13641/13641), 12.18 MiB | 1.05 MiB/s, done.
Resolving deltas: 100% (9514/9514), done.

conda 配置环境

需要先安装conda环境,本机使用miniconda3

  • 创建虚拟环境

    conda create -n yolov5 python==3.9 -y
    
  • 激活环境

    (yolov5) D:\ptwork\git\yolov5>conda activate yolov5
    (yolov5) D:\ptwork\git\yolov5>
    
  • 安装gpu版本pytorch

    查看本机gpu,

    (yolov5) D:\ptwork\git\yolov5>nvidia-smi
    Sat May 21 16:56:49 2022
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 511.69       Driver Version: 511.69       CUDA Version: 11.6     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  NVIDIA GeForce ... WDDM  | 00000000:2B:00.0 Off |                  N/A |
    | N/A   46C    P3    N/A /  N/A |      0MiB /  2048MiB |      3%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    

    显示使用笔记本的cuda版本是11.6,需要去pytorch下载对应的版本https://pytorch.org/get-started/locally/

    因为官网没有对应的cuda版本,这里采用了最新的版本

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
    

    安装完成,测试GPU是否可用

    (yolov5) D:\ptwork\git\yolov5>python
    Python 3.9.0 (default, Nov 15 2020, 08:30:55) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import torch
    >>> torch.cuda.device_count()
    1
    >>> torch.cuda.is_available()
    True
    

    显示有1个GPU,并且可用

安装yolov5 依赖库

  • 修改安装依赖

    因为预先安装了pytorch,需要修改依赖文件。打开刚刚下载的yolov5/requirements文件。并修改如下

    • 注释掉torchtorchvision

      #torch>=1.7.0
      #torchvision>=0.8.1
      
    • 使用清华源下载,速度嗷嗷快。

      -i https://pypi.tuna.tsinghua.edu.cn/simple
      

    修改完成的文件如下:

    # pip install -r requirements.txt
    
    # Base ----------------------------------------
    matplotlib>=3.2.2
    numpy>=1.18.5
    opencv-python>=4.1.1
    Pillow>=7.1.2
    PyYAML>=5.3.1
    requests>=2.23.0
    scipy>=1.4.1  # Google Colab version
    #torch>=1.7.0
    #torchvision>=0.8.1
    tqdm>=4.41.0
    
    # Logging -------------------------------------
    tensorboard>=2.4.1
    # wandb
    
    # Plotting ------------------------------------
    pandas>=1.1.4
    seaborn>=0.11.0
    
    # Export --------------------------------------
    # coremltools>=4.1  # CoreML export
    # onnx>=1.9.0  # ONNX export
    # onnx-simplifier>=0.3.6  # ONNX simplifier
    # scikit-learn==0.19.2  # CoreML quantization
    # tensorflow>=2.4.1  # TFLite export
    # tensorflowjs>=3.9.0  # TF.js export
    # openvino-dev  # OpenVINO export
    
    # Extras --------------------------------------
    # albumentations>=1.0.3
    # Cython  # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
    # pycocotools>=2.0  # COCO mAP
    # roboflow
    thop  # FLOPs computation
    -i https://pypi.tuna.tsinghua.edu.cn/simple
    
  • 安装依赖

    执行安装命令

    pip install -r requirements.txt
    

    等待安装结束

    (yolov5) D:\ptwork\git\yolov5>pip install -r requirements.txt
    WARNING: Ignore distutils configs in setup.cfg due to encoding errors.
    Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
    Collecting matplotlib>=3.2.2
    ......
    Successfully installed PyYAML-6.0 absl-py-1.0.0 cachetools-5.1.0 colorama-0.4.4 cycler-0.11.0 fonttools-4.33.3 google-auth-2.6.6 google-auth-oauthlib-0.4.6 grpcio-1.46.3 importlib-metadata-4.11.3 kiwisolver-1.4.2 markdown-3.3.7 matplotlib-3.5.2 oauthlib-3.2.0 opencv-python-4.5.5.64 packaging-21.3 pandas-1.4.2 protobuf-3.20.1 pyasn1-0.4.8 pyasn1-modules-0.2.8 pyparsing-3.0.9 python-dateutil-2.8.2 pytz-2022.1 requests-oauthlib-1.3.1 rsa-4.8 scipy-1.8.1 seaborn-0.11.2 tensorboard-2.9.0 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 thop-0.0.31.post2005241907 tqdm-4.64.0 werkzeug-2.1.2 zipp-3.8.0
    

测试

  • 运行测试命令

    (yolov5) D:\ptwork\git\yolov5>python detect.py
    detect: weights=yolov5s.pt, source=data\images, data=data\coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs\detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False
    Parse error at "'-i https'": Expected W:(abcd...)
    YOLOv5  v6.1-207-g5774a15 Python-3.9.0 torch-1.11.0 CUDA:0 (NVIDIA GeForce MX350, 2048MiB)
    Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...
    

    第一次运行会下载yolov5s.pt文件,下载可能会很慢,可以自行下载,放置在yolov5/文件夹下即可,也可以创建一个权重文件夹,yolov5/weights/yolov5s.pt(git上还有其他预训练好的模型,可以自行下载)。

    可以使用如下命令

    (yolov5) D:\ptwork\git\yolov5>python detect.py --weights weights/yolov5s.pt
    detect: weights=['weights/yolov5s.pt'], source=data\images, data=data\coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs\detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False
    Parse error at "'-i https'": Expected W:(abcd...)
    YOLOv5  v6.1-207-g5774a15 Python-3.9.0 torch-1.11.0 CUDA:0 (NVIDIA GeForce MX350, 2048MiB)
    
    Fusing layers...
    YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients
    image 1/2 D:\ptwork\git\yolov5\data\images\bus.jpg: 640x480 4 persons, 1 bus, Done. (0.034s)
    image 2/2 D:\ptwork\git\yolov5\data\images\zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.025s)
    Speed: 1.5ms pre-process, 29.5ms inference, 3.5ms NMS per image at shape (1, 3, 640, 640)
    Results saved to runs\detect\exp2
    

    运行的结果在runs\detect\exp2中。
    在这里插入图片描述
    轻松搭建Yolov5 GPU运行环境_第1张图片

你可能感兴趣的:(机器学习,pytorch,深度学习,python)