- 大型语言模型在自动化AI科学研究与论文撰写中的应用与展望
这是Jamon
AI4SR人工智能
1.引言:LLM驱动科学研究与论文撰写的范式转变大型语言模型(LLM)的快速发展正在科学发现领域引发一场深刻的范式转变。这些模型正从最初的任务特定自动化工具,逐步演变为能够自主执行复杂任务的智能代理,从根本上重新定义了研究过程以及人机协作的模式。LLM所展现出的新兴能力,例如高级规划、复杂推理和精确指令遵循,显著加速了科学发现的步伐。传统科学研究通常是一个由人类主导的、高度线性且劳动密集型的过程,
- 电商新风口:实时视频直播模型MirageLSD震撼发布!| AI日报
未来世界2099
AI日报人工智能大模型MirageLSD
应用1、OpenAI重磅推出ChatGPTAgent!智能体时代正式开启,浏览器将被AI接管2、00后天才团队震撼发布!全球首个A股金融博弈智能体应用横空出世3、KimiPlayground震撼上线:AI助手进化成"全能工具王",开发者狂欢开启4、MistralAI聊天机器人LeChat大升级:语音交互+深度研究+图像编辑三连击5、Slack掀起AI办公革命:聊天自动总结、术语秒懂、工作流一键自动
- 【华为OD机试真题 2025C卷】161、 机器人可活动的最大网格点数目 | 机试真题+思路参考+代码解析(C++、Java、Py、C语言、JS)
KFickle
最新华为OD机试(C++JavaPyCJS)+OJ华为od机器人c++华为OD机试真题java机器人可活动的最大网格点数目c语言
文章目录一、题目题目描述输入输出样例1二、代码与思路参考C++代码Java代码Python代码C语言代码JS代码订阅本专栏后即可解锁在线OJ刷题权限个人博客首页:KFickle专栏介绍:最新的华为OD机试真题,使用C++,Java,Python,C语言,JS五种语言进行解答,每个题目都包含解题思路,五种语言的解法,每日持续更新中,订阅后支持开通在线OJ测试刷题!!!一次订阅永久享受更新,有代码问题
- 3D打印遥控投喂船:用ESP32C3打造低成本水上机器人
iotzgq
机器人
项目缘起:从脚踏船到智能投喂的创新转身在创客圈,灵感往往源于意外的"灵光一闪"。这个3D打印遥控投喂船的项目最初只是想做一艘普通的遥控脚踏船,直到开发者突发奇想:为什么不增加一个自动投喂装置?这个改动让项目瞬间具备了实用价值——不仅能在湖面操控小船畅玩,还能精准投放鱼食或鱼药到人工难以到达的水域。最令人称道的是其无线通信方案:放弃了传统遥控模块,采用ESP-NOW协议实现船与遥控器的通信。这种方案
- Postman + Newman + Jenkins 接口自动化测试
Thomas Kant
自动化测试postmannewmanjenkinsallure
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Postman
- 无人值守人工智能智慧系统数据分析:深度洞察与未来展望
呆码科技
人工智能数据分析数据挖掘
无人值守人工智能智慧系统数据分析:深度洞察与未来展望随着科技的飞速发展,人工智能(AI)技术已逐渐渗透到社会经济的各个领域,其中无人值守人工智能智慧系统作为AI技术应用的前沿阵地,正引领着一场深刻的行业变革。这类系统通过集成高级算法、大数据分析、物联网(IoT)及云计算等先进技术,实现了对复杂环境的自主监控、智能决策与高效管理,极大地提升了运营效率,降低了人力成本,并开启了数据驱动决策的新纪元。本
- 关于NUC+雷达+倍福组网交换机是否完全足够的问题(是否需要一个路由器)
Tipriest_
机器人实际系统网络机器人交换机路由器IO网段
你好!这是一个非常经典和常见的工业自动化/机器人系统组网问题。你的想法完全正确。核心答案:只用一个交换机是完全可以的,而且是标准的做法。你不需要路由器来提供网关(Gateway)。下面我为你详细解释一下,并提供具体的操作步骤和注意事项。1.为什么一个交换机就够了?(交换机vs.路由器)为了理解这一点,我们需要明白交换机和路由器的根本区别:交换机(Switch):作用:连接同一个局域网(LAN)内的
- 论“人工智能生命体”站在那个高度?(之二)
中國龍在廣州
人工智能-智能体-具身智能人工智能
第一部分:人工智能生命体人工智能生命体,提及的是《人工智能生命体新启点》一书,原文附后,本文中以本书代表。《人工智能生命体新启点》一书,是在现今科学技术发展,从人工智能、智能体、具身智能等大环境下,形成的一种全新理念的理论指导,以此发展出具有自我意识的人工智能生命体,拥有现代科技并以生命体的形式出现,具备类人类般的思想活动,更好的体现与融入人类的社会环境;具有自我意识的智能生命体就如人类的拥有大脑
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(上)
Allen_Lyb
数智化教程(第二期)人工智能数据库架构
引言随着人工智能(AI)在医疗健康领域的广泛应用,数据已成为医疗AI发展的核心驱动力。然而,医疗数据具有极度的异构性(包括结构化电子病历、医学影像向量、基因组JSON/图结构、传感器时序等),传统数据架构难以高效整合。因数据孤岛、复杂ETL流程以及昂贵维护成本,医疗AI平台通常难以充分发挥价值。融合数据库(ConvergedDatabase/多模态一体化数据库)通过支持SQL、JSON、图、向量、
- 一文看懂:马斯克旗下人工智能公司 xAI 正式推出的Grok 4,Grok 4 如何开启 “多智能体内生化” 的 AI 新范式,重塑多模态大模型与 AI Agent 未来
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容人工智能gptagichatgpt大模型deeplearning神经网络
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列二十六一文看懂:马斯克旗下人工智能公司xAI正式推出的Grok4,Grok4如何开启“多智能体内生化”的AI新范
- 大模型开源王炸!Kimi K2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容transformerchatgpt深度学习lstmkimiAgentAIGC
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列二十七开源王炸!KimiK2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入一、架构
- 数据科学简讯 2023-04-07
数科每日
image.png头条SegmentAnything图像分割的重大进步图像分割是提取图像中代表特定对象(例如人或桌子)的所有像素的过程。由于几个原因,这是一项艰巨的任务,通常它要么需要大量预定义对象的数据集,要么需要一些的初级监督数据。Meta的这个全新的、完全开源的模型感觉就像是功能上的飞跃。他们收集了大量数据集,简化了注释功能,并创建了一个可以在浏览器中实时运行的模型。并提供演示、代码和论文。
- 网络爬虫——python爬取豆瓣评论
SSeaflower
爬虫python开发语言
网络爬虫——python爬取豆瓣评论一、网络爬虫概述1.1网络爬虫定义网络爬虫,又被称为网络蜘蛛(WebSpider)、网络机器人等。它根据网页地址(URL)爬取网页内容,网页地址(URL)就是我们在浏览器中输入的网站链接。例如:https://www.baidu.com;https://movie.douban.com/。网络爬虫不仅能够复制网页信息和下载音视频,还可以做到网站的模拟登录和行为链
- Prompt:开启与AI高效对话的钥匙
解密Prompt:开启与AI高效对话的钥匙一、什么是Prompt?——AI的“使用说明书”想象一下,你正在指挥一位无所不知但毫无主动性的“实习生”——人工智能(AI)。你不能指望它“心领神会”,你必须给出清晰、具体的指令,它才能准确地完成你想要的任务。这个指令,就是Prompt(提示或提示词)。简单来说,Prompt是你向AI(如大型语言模型LLM)发出的文本或问题,用以引导它生成特定的、高质量的
- AI人工智能中Actor - Critic算法的深入解析与应用场景
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能中Actor-Critic算法的深入解析与应用场景关键词:Actor-Critic、强化学习、策略梯度、价值函数、深度强化学习、马尔可夫决策过程、A2C/A3C摘要:本文将深入解析Actor-Critic算法的核心原理,从基础概念到数学推导,再到实际应用场景。我们将通过生动的比喻解释这一强化学习中的重要算法,展示其Python实现代码,并探讨它在游戏AI、机器人控制等领域的应用。最后,
- AI人工智能领域多模态大模型的发展历程回顾
AI智能探索者
AIAgent智能体开发实战人工智能ai
AI人工智能领域多模态大模型的发展历程回顾关键词:AI人工智能、多模态大模型、发展历程、技术演变、应用场景摘要:本文旨在全面回顾AI人工智能领域多模态大模型的发展历程。通过对不同阶段核心概念、算法原理、数学模型等方面的深入剖析,结合实际项目案例,探讨其在各个领域的应用场景。同时,推荐相关的学习资源、开发工具和重要论文著作,最后总结多模态大模型的未来发展趋势与挑战,并对常见问题进行解答。1.背景介绍
- AI人工智能领域Actor - Critic算法的可视化分析
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能领域Actor-Critic算法的可视化分析关键词:Actor-Critic算法、强化学习、策略梯度、价值函数、可视化分析、神经网络、马尔可夫决策过程摘要:本文深入浅出地讲解Actor-Critic算法的核心原理,通过生活化的比喻和可视化分析,帮助读者理解这一强化学习中的重要算法。我们将从基础概念入手,逐步剖析算法架构,并通过Python代码实现和可视化演示,展示算法在实际问题中的应用
- 如何用深度学习实现图像风格迁移
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。前言图像风格迁移是人工智能领域中一个非常有趣且富有创意的应用。它能够让一张普通的照片瞬间变成梵高笔下的《星月夜》风格,或者像莫奈的《睡莲》一样充满艺术感。这种技术不仅在
- 机器视觉基础(直播回放)
机器视觉基础总结:本次讲解主要围绕工业相机的基础配置、图像处理及与机器人联动通信的应用展开,重点在于相机网络设置、软件操作流程、模板匹配方法以及标定调试等内容。**相机基础配置**-需确保相机与电脑连接正常,并正确设置IP地址以避免冲突。-使用官方软件检测相机状态,若出现黄色叹号提示,则需手动修改IP地址。-网络配置完成后可在软件中看到设备并进行后续操作。**相机参数设置**-曝光时间用于调节图像
- PE系统机器视觉实战(直播回放)
遨博学院
机器人竞赛机器人人工智能
PE系统机器视觉实战本次培训主要围绕视觉与机器人的综合实践展开,重点讲解了视觉标定和机器人通过视觉实现随机抓取的操作流程。以下是详细要点总结:网络配置需配置三个设备:机器人、电脑和相机的IP地址,确保网络互通。机器人IP设为192.168.1.50,电脑为60,相机为70。电脑建议使用有线网卡,关闭防火墙及杀毒软件,避免网络冲突。可通过ping命令测试网络连通性。视觉标定操作使用MVS软件配置相机
- 强化学习------DDPG算法
ZPC8210
算法numpymatplotlib
一、前言DeepDeterministicPolicyGradient(DDPG)算法是DeepMind团队提出的一种专门用于解决连续控制问题的在线式(on-line)深度强化学习算法,它其实本质上借鉴了DeepQ-Network(DQN)算法里面的一些思想。论文和源代码如下:论文:https://arxiv.org/pdf/1509.02971.pdf代码:https://github.com/
- AI人工智能领域TensorFlow的模型训练策略
AIGC应用创新大全
人工智能tensorflowpythonai
AI人工智能领域TensorFlow的模型训练策略关键词:TensorFlow、模型训练、深度学习、神经网络、优化策略、分布式训练、迁移学习摘要:本文将深入探讨TensorFlow框架下的模型训练策略,从基础概念到高级技巧,全面解析如何高效训练深度学习模型。我们将从数据准备、模型构建、训练优化到部署应用,一步步揭示TensorFlow模型训练的核心技术,并通过实际代码示例展示最佳实践。背景介绍目的
- Actor - Critic:AI人工智能领域的新宠儿
Actor-Critic:AI人工智能领域的新宠儿关键词:强化学习、Actor-Critic、策略梯度、价值函数、深度强化学习、A2C、A3C摘要:Actor-Critic是强化学习领域的一种重要算法框架,它结合了策略梯度方法和价值函数方法的优点,成为近年来人工智能领域的热门研究方向。本文将用通俗易懂的方式介绍Actor-Critic的核心概念、工作原理、实现方法以及实际应用,帮助读者理解这一强大
- 探索AI人工智能中遗传算法的进化奥秘
AI学长带你学AI
人工智能ai
探索AI人工智能中遗传算法的进化奥秘关键词:遗传算法、自然选择、基因编码、适应度函数、群体进化、交叉变异、优化问题摘要:本文将用生物进化视角解读人工智能中的遗传算法原理。通过达尔文进化论的生活化比喻,结合Python代码实例演示如何模拟基因遗传、自然选择等过程,揭示遗传算法在路径规划、参数优化等场景的应用奥秘。最后探讨遗传算法的局限性与未来发展方向。背景介绍目的和范围本文旨在用通俗易懂的方式解析遗
- 深度剖析AI人工智能领域多模态大模型
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
深度剖析AI人工智能领域多模态大模型关键词:AI人工智能、多模态大模型、模型架构、算法原理、应用场景摘要:本文旨在对AI人工智能领域的多模态大模型进行深度剖析。首先介绍多模态大模型的背景知识,包括目的、预期读者等。接着阐述核心概念,分析其架构和原理,并给出相应的流程图。通过Python代码详细讲解核心算法原理和具体操作步骤,同时用数学模型和公式进一步阐释。在项目实战部分,给出实际案例及详细代码解读
- Open AI在AI人工智能领域的创新之路
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
OpenAI在AI人工智能领域的创新之路关键词:OpenAI、人工智能、创新之路、技术突破、应用场景摘要:本文深入探讨了OpenAI在AI人工智能领域的创新之路。首先介绍了OpenAI的背景信息,包括其成立目的、发展历程等。接着详细阐述了OpenAI的核心概念,如强化学习、生成式对抗网络等,并通过示意图和流程图展示其原理和架构。然后讲解了相关核心算法原理,结合Python代码进行具体说明。同时,给
- 探索AI人工智能领域Actor - Critic的无限潜力
探索AI人工智能领域Actor-Critic的无限潜力关键词:AI人工智能、Actor-Critic、强化学习、策略网络、价值网络摘要:本文将深入探索AI人工智能领域中Actor-Critic方法的无限潜力。我们会先介绍其背景知识,接着用通俗易懂的方式解释核心概念,包括Actor和Critic的含义及它们之间的关系,然后阐述其核心算法原理和具体操作步骤,还会给出数学模型和公式并举例说明。通过项目实
- AI人工智能领域多模态大模型的技术瓶颈与解决方案
AI学长带你学AI
人工智能ai
AI人工智能领域多模态大模型的技术瓶颈与解决方案关键词:多模态大模型、技术瓶颈、跨模态对齐、计算效率、数据稀缺、模型泛化、解决方案摘要:本文深入探讨了AI人工智能领域多模态大模型发展过程中面临的主要技术瓶颈,包括跨模态对齐困难、计算资源消耗巨大、高质量多模态数据稀缺、模型泛化能力不足等问题。针对这些挑战,我们提出了系统性的解决方案,涵盖算法优化、架构创新、数据增强等多个维度。文章通过理论分析、数学
- 【杂谈】-人工智能:从无序部署到可问责治理的转型之路
人工智能:从无序部署到可问责治理的转型之路文章目录人工智能:从无序部署到可问责治理的转型之路1、失控的人工智能与“漂移”现象的潜在危机2、穿透迷雾:探寻人工智能治理的真谛3、民主化进程中的治理觉醒4、迈向未来:构建可问责的人工智能生态体系5、抉择时刻:关乎人工智能发展走向的关键权衡人工智能已然步入一个关键的转折阶段。当下,众多企业竞相投身于各类人工智能系统的部署浪潮之中,从功能多样的生成式人工智能
- 【C# + HALCON 机器视觉】构建通用视觉软件平台:跨行业应用实战
AI_DL_CODE
机器视觉:C#+HALCONc#HALCON机器视觉通用软件平台二维码识别模板匹配OCR
摘要:本文深入探讨基于C#与HALCON开发通用视觉软件平台的技术路径与实践方法,围绕二维码识别、OCR、模板匹配等核心功能,结合模块化设计理念,详细阐述相机参数设置、图像处理、通信模块等技术实现。通过与爱普生机器人配合的定位标定案例,以及印刷品缺陷检测、包装日期识别等应用场景,展示该平台在跨行业领域的应用价值,同时提供完整实操流程与代码示例,助力开发者快速搭建高效、低成本的机器视觉解决方案。文章
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio