Medical transformer源码解读

1.数据预处理

        数据预处理部分比较常规,进行了一下裁剪和色彩增强操作,比较简单,不在多说。另外,官方github上提供了数据

2.网络结构

全局特征提取

                首先,为了节省运算,经过卷积对特征图进行下采样,下采样至64*64大小,然后将结果输入堆叠的Gate Aixal Attention中,进行特征提取。

  Gate Aixal Attention:

        Aixal Attention分别对H轴和W轴进行自注意力机制运算,具体过程为:

  • 首先经过线性投影得到q,k,v,需要注意的是q为8个通道,k为8个通道,v为16个通道,因为v要汇集两个轴的信息。
  • 随机初始化可以学习的位置编码r,维度为4,H,W,其中q的维度为1,H,W,K的维度为1,H,W,V的维度为2,H,W
  • 如下图所示,首先求得qk,qr,kr,并对qr和kr使用Gk,Gq抑制因子对qr和kr的影响进行抑制。然后汇集qk和qr、kr的信息,具体为先拼接再求和,最后经过softmax归一化得到注意力权重
  • 求得qkv和qkr,并使用门控抑制因子进行抑制,然后融合特征和位置编码(先拼接再求和)得到注意力计算结果

Medical transformer源码解读_第1张图片

Medical transformer源码解读_第2张图片

局部特征提取:

        对于局部特征提取,与全局特征提取相类似,首先将特征图划分为16个小区域,经过卷积进行下采样, 然后将特征图输入轴注意力中,不同的是,此时的轴注意力没有相对位置编码,因为全局特征已经加入了位置编码,做完所有的Ecoder层以后,经过由卷积层和上采样层组成decoder(与u-net类似)。特征图不断增大。经过decoder后,合并所有的局部特征层,与全局特征提取结果进行拼接,输出结果。

代码如下:

# madical transformer网络结构
class medt_net(nn.Module):

    def __init__(self, block, block_2, layers, num_classes=2, zero_init_residual=True,
                 groups=8, width_per_group=64, replace_stride_with_dilation=None,
                 norm_layer=None, s=0.125, img_size = 128,imgchan = 3):
        super(medt_net, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = int(64 * s)
        self.dilation = 1
        if replace_stride_with_dilation is None:
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.conv2 = nn.Conv2d(self.inplanes, 128, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv3 = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.bn2 = norm_layer(128)
        self.bn3 = norm_layer(self.inplanes)
        # self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, int(128 * s), layers[0], kernel_size= (img_size//2))
        self.layer2 = self._make_layer(block, int(256 * s), layers[1], stride=2, kernel_size=(img_size//2),
                                       dilate=replace_stride_with_dilation[0])
        # self.layer3 = self._make_layer(block, int(512 * s), layers[2], stride=2, kernel_size=(img_size//4),
        #                                dilate=replace_stride_with_dilation[1])
        # self.layer4 = self._make_layer(block, int(1024 * s), layers[3], stride=2, kernel_size=(img_size//8),
        #                                dilate=replace_stride_with_dilation[2])
        
        # Decoder
        # self.decoder1 = nn.Conv2d(int(1024 *2*s)      ,        int(1024*2*s), kernel_size=3, stride=2, padding=1)
        # self.decoder2 = nn.Conv2d(int(1024  *2*s)     , int(1024*s), kernel_size=3, stride=1, padding=1)
        # self.decoder3 = nn.Conv2d(int(1024*s),  int(512*s), kernel_size=3, stride=1, padding=1)
        self.decoder4 = nn.Conv2d(int(512*s) ,  int(256*s), kernel_size=3, stride=1, padding=1)
        self.decoder5 = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
        self.adjust   = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
        self.soft     = nn.Softmax(dim=1)


        self.conv1_p = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.conv2_p = nn.Conv2d(self.inplanes,128, kernel_size=3, stride=1, padding=1,
                               bias=False)
        self.conv3_p = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1,
                               bias=False)
        # self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1_p = norm_layer(self.inplanes)
        self.bn2_p = norm_layer(128)
        self.bn3_p = norm_layer(self.inplanes)

        self.relu_p = nn.ReLU(inplace=True)

        img_size_p = img_size // 4

        self.layer1_p = self._make_layer(block_2, int(128 * s), layers[0], kernel_size= (img_size_p//2))
        self.layer2_p = self._make_layer(block_2, int(256 * s), layers[1], stride=2, kernel_size=(img_size_p//2),
                                       dilate=replace_stride_with_dilation[0])
        self.layer3_p = self._make_layer(block_2, int(512 * s), layers[2], stride=2, kernel_size=(img_size_p//4),
                                       dilate=replace_stride_with_dilation[1])
        self.layer4_p = self._make_layer(block_2, int(1024 * s), layers[3], stride=2, kernel_size=(img_size_p//8),
                                       dilate=replace_stride_with_dilation[2])
        
        # Decoder
        self.decoder1_p = nn.Conv2d(int(1024 *2*s)      ,        int(1024*2*s), kernel_size=3, stride=2, padding=1)
        self.decoder2_p = nn.Conv2d(int(1024  *2*s)     , int(1024*s), kernel_size=3, stride=1, padding=1)
        self.decoder3_p = nn.Conv2d(int(1024*s),  int(512*s), kernel_size=3, stride=1, padding=1)
        self.decoder4_p = nn.Conv2d(int(512*s) ,  int(256*s), kernel_size=3, stride=1, padding=1)
        self.decoder5_p = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)

        self.decoderf = nn.Conv2d(int(128*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
        self.adjust_p   = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
        self.soft_p     = nn.Softmax(dim=1)


    def _make_layer(self, block, planes, blocks, kernel_size=56, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, groups=self.groups,
                            base_width=self.base_width, dilation=previous_dilation, 
                            norm_layer=norm_layer, kernel_size=kernel_size))
        self.inplanes = planes * block.expansion
        if stride != 1:
            kernel_size = kernel_size // 2

        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=self.groups,
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer, kernel_size=kernel_size))

        return nn.Sequential(*layers)

    def _forward_impl(self, x):
        # 首先,经过卷积对特征图进行下采样,减少运算量
        xin = x.clone()
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)
        x = self.conv3(x)
        x = self.bn3(x)
        # x = F.max_pool2d(x,2,2)
        x = self.relu(x)
        # x = self.maxpool(x)
        # pdb.set_trace()
        x1 = self.layer1(x)
        print(x1.shape)
        # print(x1.shape)
        x2 = self.layer2(x1)
        print(x2.shape)
        # print(x2.shape)
        # x3 = self.layer3(x2)
        # # print(x3.shape)
        # x4 = self.layer4(x3)
        # # print(x4.shape)
        # x = F.relu(F.interpolate(self.decoder1(x4), scale_factor=(2,2), mode ='bilinear'))
        # x = torch.add(x, x4)
        # x = F.relu(F.interpolate(self.decoder2(x4) , scale_factor=(2,2), mode ='bilinear'))
        # x = torch.add(x, x3)
        # x = F.relu(F.interpolate(self.decoder3(x3) , scale_factor=(2,2), mode ='bilinear'))
        # x = torch.add(x, x2)
        x = F.relu(F.interpolate(self.decoder4(x2) , scale_factor=(2,2), mode ='bilinear'))
        x = torch.add(x, x1)
        x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear'))
        # print(x.shape)
        
        # end of full image training 

        # y_out = torch.ones((1,2,128,128))
        x_loc = x.clone()
        print(x_loc.shape)
        # x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear'))
        #start 
        for i in range(0,4):
            for j in range(0,4):
                # 按照索引,划分为16个模块
                x_p = xin[:,:,32*i:32*(i+1),32*j:32*(j+1)]
                # begin patch wise 首先经过卷积进行下采样
                x_p = self.conv1_p(x_p)
                x_p = self.bn1_p(x_p)
                # x = F.max_pool2d(x,2,2)
                x_p = self.relu(x_p)

                x_p = self.conv2_p(x_p)
                x_p = self.bn2_p(x_p)
                # x = F.max_pool2d(x,2,2)
                x_p = self.relu(x_p)
                x_p = self.conv3_p(x_p)
                print(x_p.shape)
                x_p = self.bn3_p(x_p)
                # x = F.max_pool2d(x,2,2)
                x_p = self.relu(x_p)
                
                # x = self.maxpool(x)
                # pdb.set_trace()
                # 去除相对位置编码的轴注意力
                x1_p = self.layer1_p(x_p)
                # print(x1.shape)
                x2_p = self.layer2_p(x1_p)
                x3_p = self.layer3_p(x2_p)
                x4_p = self.layer4_p(x3_p)

                # Decoder,由卷积组成,并上采样
                x_p = F.relu(F.interpolate(self.decoder1_p(x4_p), scale_factor=(2,2), mode ='bilinear'))
                print(x_p.shape)
                x_p = torch.add(x_p, x4_p)
                print(x_p.shape)
                x_p = F.relu(F.interpolate(self.decoder2_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
                print(x_p.shape)
                x_p = torch.add(x_p, x3_p)
                print(x_p.shape)
                x_p = F.relu(F.interpolate(self.decoder3_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
                x_p = torch.add(x_p, x2_p)
                x_p = F.relu(F.interpolate(self.decoder4_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
                x_p = torch.add(x_p, x1_p)
                x_p = F.relu(F.interpolate(self.decoder5_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
                print(x_p.shape)
                # 合并局部特征图
                x_loc[:,:,32*i:32*(i+1),32*j:32*(j+1)] = x_p

        x = torch.add(x,x_loc)
        x = F.relu(self.decoderf(x))
        
        x = self.adjust(F.relu(x))

        # pdb.set_trace()
        return x

    def forward(self, x):
        return self._forward_impl(x)

你可能感兴趣的:(图像分割,transformer,深度学习,人工智能,计算机视觉,神经网络)