Concatenate pandas objects along a particular axis.
Allows optional set logic along the other axes.
Can also add a layer of hierarchical indexing on the concatenation
axis, which may be useful if the labels are the same (or overlapping)
on the passed axis number.
pandas.concat
pandas.concat(objs, *, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)
a = pd.DataFrame(np.random.normal(0, 1, (3, 3)))
b = pd.DataFrame(np.random.normal(0, 1, (5, 5)))
c = pd.concat([a, b], axis=1, join='inner', ignore_index=True)
Merge DataFrame or named Series objects with a database-style join.
A named Series object is treated as a DataFrame with a single named
column.The join is done on columns or indexes. If joining columns on columns,
the DataFrame indexes will be ignored. Otherwise if joining indexes on
indexes or indexes on a column or columns, the index will be passed
on. When performing a cross merge, no column specifications to merge
on are allowed.
pandas.merge
pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
You can use Pandas merge to implement vlookup like functions
a = pd.DataFrame(np.random.normal(0, 1, (3, 3)))
a['merge'] = [1, 2, 3]
b = pd.DataFrame(np.random.normal(0, 1, (5, 5)), index=[2, 9, 10, 11, 12])
b['merge'] = [2, 3, 4, 5, 6]
c = pd.merge(a, b, how='left', on='merge', suffixes=('_a', '_b'))
Join columns of another DataFrame.
Join columns with other DataFrame either on index or on a key column.
Efficiently join multiple DataFrame objects by index at once by
passing a list.
pandas.DataFrame.join
DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False, validate=None)
joins index-on-index by default
a = pd.DataFrame(np.random.normal(0, 1, (3, 3)))
a['merge'] = [1, 2, 3]
b = pd.DataFrame(np.random.normal(0, 1, (5, 5)), index=[2, 9, 10, 11, 12])
b['merge'] = [2, 3, 4, 5, 6]
c = a.join(b, rsuffix='_b')