嵌入式Linux设备驱动面试题汇总

大家平时在写驱动的时候,驱动相关的知识都会用到,但真到面试的时候,很难快速流畅的回答面试提出的问题,特意从网上收集整理网友遇到的问题

驱动大概的分为三部分:基础部分,同步相关,还有中断部分。中断,同步相关基本都是必问的。

基础部分

驱动中操作物理绝对地址为什么要先ioremap?

因为在内核中操作的都是虚拟地址,内核访问不到物理地址,只能通过ioremap映射为虚拟地址 内核才能访问此内存空间

设备驱动模型三个重要成员是?platform总线的匹配规则是?在具体应用上要不要先注册驱动再注册设备?有先后顺序没?

设备驱动模型的三个重要成员是总线,驱动,设备。

platfoem总线的匹配规则是:要匹配的设备和驱动都要注册,驱动和设备的匹配规则如下

1.基于设备树风格的匹配

2.匹配ID表(即platform_device设备名是否出现在platform_driver的id表内)

3.匹配platform_device设备名和驱动的名字

4.基于ACPI风格的匹配

设备可以在设备树里注册,也可以通过代码注册设备,匹配成功会去调用驱动程序里的probe函数(probe函数在这个platform_driver结构体中注册)。

insmod 一个驱动模块,会执行模块中的哪个函数?rmmod呢?这两个函数在设计上要注意哪些?遇到过卸载驱动出现异常没?是什么问题引起的?

insmod调用init函数,rmmod调用exit函数。这两个函数在设计时 要注意在init函数中申请的资源在exit函数中要释放,包括存储,ioremap,定时器,工作队列等等。也就是一个模块注册进内核,退出内核时要清理所带来的影响,带走一切不留下一点痕迹。

卸载模块时曾出现卸载失败的情形,原因是存在进程正在使用模块,检查代码后发现产生了死锁的问题。

copy_to_user()和copy_from_user()主要用于实现什么功能?一般用于file_operations结构的哪些函数里面?

由于内核空间和用户空间是不能互相访问的,如果需要访问就必须借助内核函数进行数据读写。copy_to_user():完成内核空间到用户空间的复制,copy_from_user():是完成用户空间到内核空间的复制。一般用于file_operations结构里的read,write,ioctl等内存数据交换作用的函数。当然,如果ioctl没有用到内存数据复制,那么就不会用到这两个函数。

请简述主设备号和次设备号的用途。如果执行mknod chartest c 4 64,创建chartest设备。请分析chartest使用的是那一类设备驱动程序。

  1. 主设备号:主设备号标识设备对应的驱动程序。虽然现代的linux内核允许多个驱动程序共享主设备号,但我们看待的大多数设备仍然按照“一个主设备对应一个驱动程序”的原则组织。
  2. 次设备号:次设备号由内核使用,用于正确确定设备文件所指的设备。依赖于驱动程序的编写方式,我们可以通过次设备号获得一个指向内核设备的直接指针,也可将此设备号当作设备本地数组的索引。

chartest 由驱动程序4管理,该文件所指的设备是64号设备。(感觉类似于串口终端或者字符设备终端)。

设备驱动程序中如何注册一个字符设备?分别解释一下它的几个参数的含义。

注册一个字符设备驱动有两种方法:

  1. void cdev_init(struct cdev *cdev, struct file_operations *fops)

该注册函数可以将cdev结构嵌入到自己的设备特定的结构中。cdev是一个指向结构体cdev的指针,而fops是指向一个类似于file_operations结构(可以是file_operations结构,但不限于该结构)的指针.

  1. int register_chrdev(unsigned int major, const char *name , struct file_operations *fopen);

该注册函数是早期的注册函数,major是设备的主设备号,name是驱动程序的名称,而fops是默认的file_operations结构(这是只限于file_operations结构)。对于register_chrdev的调用将为给定的主设备号注册0-255作为次设备号,并为每个设备建立一个对应的默认cdev结构。

Linux设备中字符设备与块设备有什么主要的区别?请分别列举一些实际的设备说出它们是属于哪一类设备。

  • 字符设备:字符设备是个能够像字节流(类似文件)一样被访问的设备,由字符设备驱动程序来实现这种特性。字符设备驱动程序通常至少实现open,close,read和write系统调用。字符终端、串口、鼠标、键盘、摄像头、声卡和显卡等就是典型的字符设备。
  • 块设备:和字符设备类似,块设备也是通过/dev目录下的文件系统节点来访问。块设备上能够容纳文件系统,如:u盘,SD卡,磁盘等。

字符设备和块设备的区别仅仅在于内核内部管理数据的方式,也就是内核及驱动程序之间的软件接口,而这些不同对用户来讲是透明的。在内核中,和字符驱动程序相比,块驱动程序具有完全不同的接口。

查看驱动模块中打印信息应该使用什么命令?如何查看内核中已有的字符设备的信息?如何查看正在使用的有哪些中断号?

  1. 查看驱动模块中打印信息的命令:dmesg
  2. 查看字符设备信息可以用lsmod 和modprobe,lsmod可以查看模块的依赖关系,modprobe在加载模块时会加载其他依赖的模块。
  3. 显示当前使用的中断号cat /proc/interrupt

linux中引入模块机制有什么好处?

首先,模块是预先注册自己以便服务于将来的某个请求,然后他的初始化函数就立即结束。换句话说,模块初始化函数的任务就是为以后调用函数预先作准备。好处:

  1. 应用程序在退出时,可以不管资源的释放或者其他的清除工作,但是模块的退出函数却必须仔细此撤销初始化函数所作的一切。
  2. 该机制有助于缩短模块的开发周期。即:注册和卸载都很灵活方便。

设备驱动模型三个重要成员是?platform总线的匹配规则是?在具体应用上要不要先注册驱动再注册设备?有先后顺序没?

设备驱动模型三个重要成员是 总线、设备、驱动;

platfoem总线的匹配规则是:要匹配的设备和驱动都要注册,设备可以在设备树里注册,也可以通过代码注册设备,匹配成功会去调用驱动程序里的probe函数(probe函数在这个platform_driver结构体中注册)。

字符型驱动设备怎么创建设备文件

手动创建:mknod /dev/led c 250 0,其中dev/led 为设备节点 c 代表字符设备 250代表主设备号 0代表次设备号

还有UDEV/MDEV自动创建设备文件的方式,UDEV/MDEV是运行在用户态的程序,可以动态管理设备文件,包括创建和删除设备文件,运行在用户态意味着系统要运行之后。在 /etc/init.d/rcS 脚本文件中会执行 mdev -s 自动创建设备节点。

内核函数mmap的实现原理,机制?

mmap函数实现把一个文件映射到一个内存区域,从而我们可以像读写内存一样读写文件,他比单纯调用read/write也要快上许多。在某些时候我们可以把内存的内容拷贝到一个文件中实现内存备份,当然,也可以把文件的内容映射到内存来恢复某些服务。另外,mmap实现共享内存也是其主要应用之一,mmap系统调用使得进程之间通过映射同一个普通文件实现共享内存。

linux中内存划分及如何使用?虚拟地址及物理地址的概念及彼此之间的转化,高端内存概念?

1. 用户虚拟地址

这是在用户空间进程所能看到的常规地址。每个进程多有自己的虚拟地址,并且可以使用大于物理内存大小的空间。

2. 物理地址

该地址在处理器和系统内存之间使用,对应与真是物理地址。

3. 总线地址

所有的地址都可以称为总线地址,因为开发环境下所有的设备都是接在总线上,如AXI总线,APB总线,PCI总线 I2C总线 SPI总线。也就会存在很多种地址空间。

4. 内核逻辑地址

内核逻辑地址组成了内核的常规地址空间。该地址映射了部分(或者全部)内存,并经常被视为物理地址。

逻辑地址使用硬件内建的指针大小,因此在安装了大量内存的32位系统中,它无法寻址全部的物理内存。

逻辑地址通常保存在unsigned long或者void *这样类型的变量中。kmalloc返回的内存就是内核逻辑地址。

5. 内核虚拟地址

内核虚拟地址与物理地址的映射不必是一对一的,而这是虚拟地址的特点。

所有逻辑地址都是内核虚拟地址,但是许多内核虚拟地址不是逻辑地址。vmalloc分配的内存就是一个虚拟地址。

4G的进程地址空间被人为的分为两个部分——用户空间与内核空间。用户空间从0到3G(0xC0000000),内核空间占据3G到4G。用户进程通常情况下只能访问用户空间的虚拟地址,不能访问内核空间虚拟地址。只有用户进程进行系统调用(代表用户进程在内核态执行)等时刻可以访问到内核空间。

虚拟地址,即逻辑地址,是指由程序产生的与段相关的偏移地址部分。

物理地址 (physical address): 放在寻址总线上的地址。

地址空间大于1G的内存区域称之为高端内存

嵌入式Linux设备驱动面试题汇总_第1张图片

总结:高端内存的作用就是用于建立临时地址映射,用于kernel申请user空间内存

malloc(), vmalloc()和kmalloc()区别

  1. [kmalloc和vmalloc是分配的是内核的内存,malloc分配的是用户的内存
  2. kmalloc保证分配的内存在物理上是连续的,vmalloc保证的是在虚拟地址空间上的连续,malloc不保证任何东西(这点是自己猜测的,不一定正确)
  3. kmalloc能分配的大小有限,vmalloc和malloc能分配的大小相对较大
  4. 内存只有在要被DMA访问的时候才需要物理上连续
  5. vmalloc比kmalloc要慢

内存管理MMU的作用?

  1. 内存分配和回收
  2. 内存保护
  3. 内存扩充
  4. 地址映射

嵌入式设备,为加快启动速度,可以做哪些方面的优化?

linux默认的安装内核相当庞大,为了保证系统的兼容性和灵活性,支持热插拔操作,内核启动时要进行大量的硬件检测和初始化工作,而嵌入式的硬件都是固定的,只需要选择需要的硬件驱动就可以,不需要全部的硬件驱动都检测;因此可以进行适当的裁剪内核达到缩小启动linux系统的目的;同时可以统计驱动模块的耗时时间,对耗时较长的模块驱动加以分析,优化

简述linux系统启动过程

Linux系统的启动过程并不是大家想象中的那么复杂,其过程可以分为5个阶段:

  1. 内核的引导。
  2. 运行 init。
  3. 系统初始化。
  4. 建立终端 。
  5. 用户登录系统。

介绍一下Linux设备树

DTS即DeviceTree Source 设备树源码,是一种描述硬件的数据结构,以树状节点的方式描述一个设备的各种硬件信息细节:CPU、GPIO、时钟、中断、内存等,形成类似文本文件dts,直接透过它传递给Linux,使得驱动程序与硬件分离,只需要修改dts文件,便能实现需求设备树易于扩展,硬件有变动时不需要重新编译内核或驱动程序,只需要提供不一样的dtb文件

DTS和DTSI(源文件)

dts文件是一种ASCII文本对DeviceTree的描述,放置在内核的/arch/arm/boot/dts目录。一般而言,一个.dts文件对应一个ARM的machine。

由于一个SOC可能有多个不同的电路板(.dts文件为板级定义,.dtsi文件为SoC级定义),而每个电路板拥有一个.dts。这些dts势必会存在许多共同部分,为了减少代码的冗余,设备树将这些共同部分提炼保存在.dtsi文件中,供不同的dts共同使用。编译工具编译.dts生成的二进制文件(.dtb),uboot在引到内核时,会预先读取.dtb到内存,进而由内核解析,系统启动。.dtsi的使用方法,类似于C语言的头文件,在dts文件中需要进行include .dtsi文件。当然,dtsi本身也支持include另一个dtsi文件。dtb、dtsi、dtb文件作用、关系

  1. dtsi——类似于c语言的头文件
  2. dts——类似于c语言的源文件
  3. dtb——类似于c语言的编译产物、二进制文件

U-boot的启动流程

1、汇编阶段
A、初始化关键硬件:关闭看门狗、中断、MMU和Cache(缓存)等,开启时钟、串口、Flash和内存等。
目的:为了U-boot稳定性,关掉不必要或影响稳定性的硬件,打开运行U-boot必须的硬件。即通过使U-boot运行单纯化,从而保证U-boot的稳定性。
B、U-boot自搬移:U-boot自己将自己从Flash搬移到内存(RAM)运行。
目的:提高U-boot的运行速度。因为内存要比Flash速度快。
2、C语言阶段:
A、初始化大部分硬件;
B、将Linux内核(Kernel)从Flash中“搬移”到内存中运行;
C、运行内核(Kernel)。

另外一个回答:
这一过程可以分为两个阶段,各个阶段的功能如下:
第一阶段的功能:

  • 硬件设备初始化;
  • 加载u-boot第二阶段的代码到RAM空间;
  • 设置好栈;
  • 跳转到u-boot第二阶段代码的入口处;

第二阶段的功能:

  • 初始化本阶段使用的硬件设备;
  • 检测系统内存映射;
  • 将Linux内核从Flash读取到RAM中;
  • 为Linux内核设置启动参数;
  • 调用Linux内核。

中断

IRQ和FIQ有什么区别,在CPU里面是是怎么做的?

IRQ(Interrupt Request):指中断模式。
FIQ(Fast Interrupt Request):指快速中断模式。
IRQ与FIQ是ARM处理器的两种不同编程模式(ARM有7种处理模式)。

  1. 对FIQ你必须进快处理中断请求,并离开这个模式。
  2. IRQ可以被FIQ所中断,但FIQ不能被IRQ所中断,在处理FIQ时必须要关闭中断。
  3. FIQ的优先级比IRQ高。
  4. FIQ模式下,比IRQ模式多了几个独立的寄存器。

不要小看这几个寄存器,ARM在编译的时候,如果你FIQ中断处理程序足够用这几个独立的寄存器来运作,它就不会进行通用寄存器的压栈,这样也省了一些时间。

  1. FIQ的中断向量地址在0x0000001C,而IRQ的在0x00000018。(也有的在FFFF001C以及FFFF0018)

写过完整汇编系统的都比较明白这点的差别,18只能放一条指令,为了不与1C处的FIQ冲突,这个地方只能跳转,而FIQ不一样,1C以后没有任何中断向量表了,这样可以直接在1C处放FIQ的中断处理程序,由于跳转的范围限制,至少少了一条跳转指令。

  1. IRQ和FIQ的响应延迟有区别

IRQ的响应并不及时,从Verilog仿真来看,IRQ会延迟几个指令周期才跳转到中断向量处,看起来像是在等预取的指令执行完。FIQ的响应不清楚,也许比IRQ快。

请简述中断于DMA的区别。Linux设备驱动程序中,使用哪个函数注册和注销中断处理程序?

1)DMA:是一种无须CPU的参与就可以让外设与系统内存之间进行双向数据传输的硬件机制,使用DMA可以使系统CPU从实际的I/O数据传输过程中摆脱出来,从而大大提高系统的吞吐率.

中断:是指CPU在执行程序的过程中,出现了某些突发事件时CPU必须暂停执行当前的程序,转去处理突发事件,处理完毕后CPU又返回源程序被中断的位置并继续执行。

所以中断和DMA的区别就是DMA不需CPU参与而中断是需要CPU参与的。

中断的上半部分和下半部分的问题:请说明分成上半部分和下半部分的原因,为何要分?该如何实现?

中断分成上半部分和下班部分的原因主要是因为内核要保证内核中进程的正常调度和运行,中断程序所以需要短小精悍,但是有些驱动在中断处理程序需要完成大量的工作,所以就很耗时。为了解决这个问题就Linux 将中断处理程序分解为两个半部:顶半部(top half)和底半部(bottom half)。

顶半部完成尽可能少的比较紧急的功能,底半部就由tasklet或者工作队列的方法实现 具体的实现效果如下

  1. 定义和初始化

struct tasklet_struct tlet;
tasklet_init(&tlet, jit_tasklet_fn, (unsigned long) data);

参数
第一个:定义的tasklet变量
第二个:函数
第三个:数据 传递给回调函数的数据

  1. 定义函数

void jit_tasklet_fn(unsigned long arg)
{
//中断的底半部 执行该函数的时候,已经出中断了
printk("in jit_tasklet_fn jiffies=%ld\n",jiffies);}
在需要调度的地方调用以下函数
tasklet_schedule(&tlet);
一般在中断函数当中调度在不晚于下一个时钟滴答之前执行

【tasklet 和定时器的区别】
1. 执行时间
定时器的执行:时间是确定的
tasklet:不确定的
2.tasklet 执行耗时的操作的

软中断是如何实现的?
软中断是用软件方式模拟硬件中断的概念,实现宏观上的异步执行效果。

写一个中断服务需要注意哪些?如果中断产生之后要做比较多的事情你是怎么做的?
第一:中断处理例程应该尽量短把能放在后半段(tasklet,等待队列等)的任务尽量放在后半段
评:写一个中断服务程序要注意快进快出,在中断服务程序里面尽量快速采集信息,包括硬件信息,然后推出中断,要做其它事情可以使用工作队列或者tasklet方式。也就是中断上半部和下半部。
第二:中断服务程序中不能有阻塞操作
第三:中断服务程序注意返回值,要用操作系统定义的宏做为返回值,而不是自己定义的OK,FAIL之类的

中断能不能睡眠,为什么?下半部能不能睡眠?

中断发生以后,CPU跳到内核设置好的中断处理代码中去,由这部分内核代码来处理中断。这个处理过程中的上下文就是中断上下文。

为什么可能导致睡眠的函数都不能在中断上下文中使用呢? 首先睡眠的含义是将进程置于“睡眠”状态,在这个状态的进程不能被调度执行。然后,在一定的时机,这个进程可能会被重新置为“运行”状态,从而可能被调度 执行。 可见,“睡眠”与“运行”是针对进程而言的,代表进程的task_struct结构记录着进程的状态。内核中的“调度器”通过task_struct对进 程进行调度。

但是,中断上下文却不是一个进程,它并不存在task_struct,所以它是不可调度的。所以,在中断上下文就不能睡眠。

工作队列可以把工作推后,交由一个内核线程去执行——这个下半部总是会在进程上下文执行。这样,通过工作队列执行的代码能占尽进程上下文的所有优势,最重要的是工作队列允许重新调度甚至是睡眠。下半部是可以睡眠的

如果你需要用一个可以重新调度的实体来执行你的下半部处理,你应该使用工作队列,它是唯一能在进程上下文运行的下半部实现的机制,也只有它才可以睡眠,这意味着你在你需要获得大量的内存时,在你需要获取信号量时,在你需要执行阻塞式的IO操作时,它都会非常有用,如果你不需要用一个内核线程来推后执行工作,那么就考虑使用tasklet吧!

tasklet和workqueue区别?
tasklet运行于中断上下文,不允许阻塞 、休眠,而workqueue运行与进程上下文,可以休眠和阻塞。

同步

异步IO和同步IO的区别?

如果是同步IO,当一个IO操作执行时,应用程序必须等待,直到此IO执行完,相反,异步IO操作在后台运行,IO操作和应用程序可以同时运行,提高系统性能,提高IO流量; 在同步文件IO中,线程启动一个IO操作然后就立即进入等待状态,直到IO操作完成后才醒来继续执行,而异步文件IO中,线程发送一个IO请求到内核,然后继续处理其他事情,内核完成IO请求后,将会通知线程IO操作完成了。

死锁产生的原因及四个必要条件

产生死锁的原因主要是:
(1) 因为系统资源不足。
(2) 进程运行推进的顺序不合适。
(3) 资源分配不当等。

如果系统资源充足,进程的资源请求都能够得到满足,死锁出现的可能性就很低,否则就会因争夺有限的资源而陷入死锁。其次,进程运行推进顺序与速度不同,也可能产生死锁。
产生死锁的四个必要条件:
(1) 互斥条件:一个资源每次只能被一个进程使用。
(2) 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
(3) 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
(4) 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
这四个条件是死锁的必要条件,只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死锁。

死锁的解除与预防:
理解了死锁的原因,尤其是产生死锁的四个必要条件,就可以最大可能地避免、预防和解除死锁。所以,在系统设计、进程调度等方面注意如何不让这四个必要条件成立,如何确定资源的合理分配算法,避免进程永久占据系统资源。此外,也要防止进程在处于等待状态的情况下占用资源。因此,对资源的分配要给予合理的规划

自旋锁和信号量在互斥使用时需要注意哪些?在中断服务程序里面的互斥是使用自旋锁还是信号量?还是两者都能用?为什么?
使用自旋锁的进程不能睡眠,使用信号量的进程可以睡眠。
中断服务例程中的互斥使用的是自旋锁,原因是在中断处理例程中,硬中断是关闭的;但是要注意这样会丢失可能到来的中断。

原子操作你怎么理解?为了实现一个互斥,自己定义一个变量作为标记来作为一个资源只有一个使用者行不行?
原子操作指的是无法被打断的操作。
第二句话的意思是:
定义一个变量,比如 int flag =0;
if(flag == 0)
{
flag = 1;
操作临界区;
flag = 0;
1
2
}

驱动里面为什么要有并发、互斥的控制?如何实现?讲个例子?
并发(concurrency)指的是多个执行单元同时、并行被执行,而并发的执行单元对共 享资源(硬件资源和软件上的全局变量、静态变量等)的访问则很容易导致竞态(raceconditions)。

解决竞态问题的途径是保证对共享资源的互斥访问,所谓互斥访问就是指一个执行单元 在访问共享资源的时候,其他的执行单元都被禁止访问。

访问共享资源的代码区域被称为临界区,临界区需要以某种互斥机制加以保护,中断屏蔽,原子操作,自旋锁,和信号量都是linux设备驱动中可采用的互斥途径。

linux中的同步机制?spinlock与信号量的区别?
linux中的同步机制:自旋锁、信号量、读写锁、循环缓冲区
spinlock在得不到锁的时候,程序会循环访问锁,性能下降
信号量在得不到锁的时候会休眠,等到可以获得锁的时候,继续执行

同步和互斥区别?

相交进程之间的关系主要有两种,同步与互斥。

  • 所谓互斥,是指散步在不同进程之间的若干程序片断,当某个进程运行其中一个程序片段时,其它进程就不能运行它们之中的任一程序片段,只能等到该进程运行完这个程序片段后才可以运行。
  • 所谓同步,是指散步在不同进程之间的若干程序片断,它们的运行必须严格按照规定的某种先后次序来运行,这种先后次序依赖于要完成的特定的任务。

显然,同步是一种更为复杂的互斥,而互斥是一种特殊的同步。也就是说互斥是两个线程之间不可以同时运行,他们会相互排斥,必须等待一个线程运行完毕,另一个才能运行,

而同步也是不能同时运行,但他是必须要安照某种次序来运行相应的线程(也是一种互斥)!

总结:

  • 互斥是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性但互斥无法限制访问者对资源的访问顺序,即访问是无序的
  • 同步:是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源

spinlock自旋锁和信号量的概念?

自旋锁在同一时刻只能被最多一个内核任务持有,所以一个时刻只有一个线程允许存在于临界区中。这点可以应用在多处理机器、或运行在单处理器上的抢占式内核中需要的锁定服务。

信号量的用法和自旋锁有相似的地方。linux中的信号量是一种睡眠锁。如果有一个任务试图获得一个已被持有的信号量时,信号量会将其推入等待队列,然后让其睡眠。这时处理器获得自由去执行其它代码。当持有信号量的进程将信号量释放后,在等待队列中的一个任务将被唤醒,从而便可以获得这个信号量。

USB设备的枚举过程?

(1) Get Device Descriptor。主机的第一个命令要求得到设备描述符,此SETUP 包为8 个字节数据(80,06,00,01,00,00,40,00),发向地址0,端口0。“40”表示返回数据长度最大为40H 个字节。实际上,只返回一个包,即数组DEV_DESC[ ]中的前8 个字节,用于说明设备的描述符的真实长度和设备的类型。

(2) Set Address。接着是设置设备地址处理事件,主机发送一个含有指定地址的数据包(00,05,02,00,00,00,00,00),在主机只有一个USB 设备的时候,这个地址一般会是2,最大地址127,USB 协议中可以连接127 个设备。设置地址事件处理结束后,设备进入地址状态,主机以后会在新的指定地址处访问设备。

(3) Get Device Descriptor。主机再次发送请求得到设备描述符的数据包(80,06,00,01,00,00,12,00),与上次不同的是,要求的数据的长度是实际的数据长度,同时是发送到Set Address命令所设置的地址。

(4) 读取全部Configuration Descriptor。接着主机要求得到设备全部的配置描述符、接口描述符和节点描述符(80,06,00,02,00,00,40,00),由于主机不知道设备描述符的真实长度,因此它要求得到64个字节。

(5) Set Interface,主机发送数据包(01,0B,00,00,00,00,00,00),设置接口值为0。

(6) Set Conifguration,确定USB设备工作在哪一个配置下。对于U盘设备来说,一般只有1个配置值,其值为01。主机发送数据包(00,09,01,00,00,00,00,00)。

(7) 如果以上步骤都正确,主机将找到新设备,并且配置成功,该设备可以正常使用,可以进行后续的U盘枚举过程了。

(8) 用busHound观察计算机对于U盘的枚举过程,发现上述步骤后还有一个GetMaxLun的操作,但是实际上对于U盘来说忽略该步骤也没有问题。

 

你可能感兴趣的:(面试题,驱动开发,嵌入式,面试,uboot,linux)