暂时先更新PART I, 持续更新。
论文 | 概要 |
---|---|
1.Attention, Suggestion and Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation 注意,建议和注释:用于生物医学图像分割的深度学习框架 |
分割、框架 |
2.Scribble2Label: Scribble-Supervised Cell Segmentation via Self-generating Pseudo-Labels with Consistency Scribble2Label:通过具有一致性的自生成伪标签,对涂鸦进行监督的细胞分割 |
标签、细胞、分割 |
3.Are Fast Labeling Methods Reliable? A Case Study of Computer-Aided Expert Annotations on Microscopy Slides 快速标记方法可靠吗? 显微镜载玻片上计算机辅助专家注释的案例研究 |
开源代码、注释、显微镜图像 |
4.Deep Reinforcement Active Learning for Medical Image Classification 深度强化主动学习用于医学图像分类 |
分类、强化主动学习 |
5.An Effective Data Refinement Approach for Upper Gastrointestinal Anatomy Recognition 一种有效的数据提炼方法,用于上消化道解剖学识别 |
上消化道、胃镜图像分割 |
6.Synthetic Sample Selection via Reinforcement Learning 通过强化学习选择合成样本 |
强化学习合成医学图像 |
7.Dual-Level Selective Transfer Learning for Intrahepatic Cholangiocarcinoma Segmentation in Non-enhanced Abdominal CT 非增强型腹部CT的肝内胆管癌分割的双重选择迁移学习。 |
肝内胆管癌、迁移学习 |
8.BiO-Net: Learning Recurrent Bi-directional Connections for Encoder-Decoder Architecture BiO-Net:学习用于编码器-解码器体系结构的重复双向连接 |
开源代码、unet改进 |
9.Constrain Latent Space for Schizophrenia Classification via Dual Space Mapping Net 通过双重空间映射网约束精神分裂症分类的潜在空间 |
神经影像 |
10.Have You Forgotten? A Method to Assess if Machine Learning Models Have Forgotten Data 你忘记了吗? 一种评估机器学习模型是否忘记了数据的方法 |
增加数据多样性以提高模型泛化能力的反向操作,让模型忘记新加入的数据 |
11.Learning and Exploiting Interclass Visual Correlations for Medical Image Classification 学习和利用类间视觉关联进行医学图像分类 |
皮肤影像、解决过拟合的一种网络、软硬标签 |
12.Feature Preserving Smoothing Provides Simple and Effective Data Augmentation for Medical Image Segmentation 保留特征的平滑功能为医学图像分割提供简单有效的数据增强 |
数据增强的方式 |
13.Deep kNN for Medical Image Classification 用于医学图像分类的Deep kNN |
小病种的分类方案 |
14.Learning Semantics-Enriched Representation via Self-discovery, Self-classification, and Self-restoration 通过自我发现,自我分类和自我修复学习丰富的语义表示 |
开源代码、语义分割、CT/MRI/X等模态、自监督 |
15.DECAPS: Detail-Oriented Capsule Networks DECAPS:面向细节的胶囊网络 |
胶囊网络、分类、病灶定位、CheXpert和RSNA肺炎数据集 |
16.Federated Simulation for Medical Imaging 医学成像联合仿真 |
联合仿真框架、应对模型无法满足所有厂商CT影响的问题 |
17.Continual Learning of New Diseases with Dual Distillation and Ensemble Strategy 双重蒸馏和集成策略对新疾病的持续学习 |
疾病诊断和分类、不忘旧知识学习新知识 |
18.Learning to Segment When Experts Disagree 在专家不同意时学习细分 |
标签优化、监督学习 |
19.Deep Disentangled Hashing with Momentum Triplets for Neuroimage Search 动量三联体的深度解散散列用于神经图像搜索 |
神经图像 |
20.Learning Joint Shape and Appearance Representations with Metamorphic Auto-Encoders 使用变形自动编码器学习关节形状和外观表示 |
BraTs 2018、关节形状 |
21.Collaborative Learning of Cross-channel Clinical Attention for Radiotherapy-Related Esophageal Fistula Prediction from CT 通过CT进行食道瘘管预测的跨渠道临床注意力的协作学习 |
注意力、食道癌 |
22.Learning Bronchiole-Sensitive Airway Segmentation CNNs by Feature Recalibration and Attention Distillation 利用注意力蒸馏和特征校准实现细支气管分割CNN |
注意力、气管分割 |
23.Learning Rich Attention for Pediatric Bone Age Assessment 通过注意力机制来评估小儿骨龄 |
注意力、骨头 |
24.Weakly Supervised Organ Localization with Attention Maps Regularized by Local Area Reconstruction 通过局部重建规则化注意图进行弱监督器官定位 |
器官分割前的定位、注意力、胸部CT数据集、肾脏KiTS19 |
25.High-Order Attention Networks for Medical Image Segmentation 用于医学图像分割的高阶注意力网络 |
高阶注意力、REFUGE和Drishti-GS1数据集、用于血管分割的DRIVE和用于肺分割的LUNA |
26.NAS-SCAM: Neural Architecture Search-Based Spatial and Channel Joint Attention Module for Nuclei Semantic Segmentation and Classification NAS-SCAM:基于神经体系结构搜索的空间和通道联合注意模块,用于核语义分割和分类 |
开源代码、不同器官细胞核语义分割、MoNuSAC 2020数据集 |
27.Scientific Discovery by Generating Counterfactuals Using Image Translation 通过使用图像翻译生成事实来进行科学发现 |
模型解释技术、黑盒可视化技术 |
28.Interpretable Deep Models for Cardiac Resynchronisation Therapy Response Prediction 可解释的深度模型,用于心脏再同步治疗反应预测 |
模型解释 |
29.Encoding Visual Attributes in Capsules for Explainable Medical Diagnoses 在胶囊中编码视觉属性以进行可解释的医学诊断 |
开源代码、胶囊网络 |
30.Interpretability-Guided Content-Based Medical Image Retrieval 基于可解释性指导的基于内容的医学图像检索 |
开源代码、医学图像检索系统 |
31.Domain Aware Medical Image Classifier Interpretation by Counterfactual Impact Analysis 基于反事实影响分析的领域感知医学图像分类器解释 |
数据与模型之间的关系解释 |
32.Towards Emergent Language Symbolic Semantic Segmentation and Model Interpretability 面向新兴语言的符号语义分割和模型可解释性 |
模型解释技术 |
33.Meta Corrupted Pixels Mining for Medical Image Segmentation 用于医学图像分割的元损坏像素挖掘 |
劣质(损坏)注释修复 |
34.UXNet: Searching Multi-level Feature Aggregation for 3D Medical Image Segmentation UXNet:搜索用于3D医学图像分割的多层特征聚合 |
UNet改进、边界位置和小组织上效果好 |
35.Difficulty-Aware Meta-learning for Rare Disease Diagnosis 难于诊断的难度感知元学习 |
稀有疾病的诊断和分类、ISIC 2018皮肤病灶分类数据 |
36.Few Is Enough: Task-Augmented Active Meta-learning for Brain Cell Classification 这么点就够了:用于脑细胞分类的任务增强型主动元学习 |
脑细胞分类、解决新数据加入模型从头训练的问题 |
37.Automatic Data Augmentation for 3D Medical Image Segmentation 用于3D医学图像分割的自动数据增强 |
数据增强 |
38.MS-NAS: Multi-scale Neural Architecture Search for Medical Image Segmentation MS-NAS:用于医学图像分割的多尺度神经体系结构搜索 |
NAS(神经架构搜索)改进 |
39.Comparing to Learn: Surpassing ImageNet Pretraining on Radiographs by Comparing Image Representations 比较学习:通过比较图像表示,在射线照片上超越ImageNet预训练 |
开源代码、医学图像上改进imageNet预训练模型、X射线数据集 |
40.Dual-Task Self-supervision for Cross-modality Domain Adaptation 跨模态域自适应的双任务自我监督 |
域自适应、UDA是现在解决问题的方法 |
41.Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for Annotation-Efficient Cardiac Segmentation Dual-Teacher:整合域内和域间教师以实现注释有效的心脏分割 |
跨模态的域自适应、从CT和MRI中同时学习 |
42.Test-Time Unsupervised Domain Adaptation 测试时间无监督域自适应 |
域自适应可解决公共数据集上训练的模型无法拓展到各种CT机上的问题 |
43.Self Domain Adapted Network 自适应域网络 |
域自适应、解决部署困难问题 |
44.Entropy Guided Unsupervised Domain Adaptation for Cross-Center Hip Cartilage Segmentation from MRI MRI指导的熵指导的无监督域自适应 |
MRI髋关节软骨分割、域自适应 |
45.User-Guided Domain Adaptation for Rapid Annotation from User Interactions: A Study on Pathological Liver Segmentation 从用户交互快速注释的用户指导域自适应:病理性肝分割研究 |
域自适应 |
46.SALAD: Self-supervised Aggregation Learning for Anomaly Detection on X-Rays SALAD:用于X射线异常检测的自我监督聚合学习 |
NIH胸部X射线和MURA数据集、模型泛化、部署解决 |
47.Scribble-Based Domain Adaptation via Co-segmentation 通过共同细分的基于涂抹的域自适应 |
开源代码、域自适应、前庭神经鞘瘤分割数据 |
48.Source-Relaxed Domain Adaptation for Image Segmentation 用于图像分割的源放松域自适应 |
开源代码、域自适应、MRI脊柱分割 |
49.Region-of-Interest Guided Supervoxel Inpainting for Self-supervision 用于自我监督的兴趣区域引导Supervoxel修复 |
自我监督、自我修复 |
50.Harnessing Uncertainty in Domain Adaptation for MRI Prostate Lesion Segmentation 利用领域适应性的不确定性进行MRI前列腺病变分割 |
开源代码、域自适应 |
51.Deep Semi-supervised Knowledge Distillation for Overlapping Cervical Cell Instance Segmentation 深度半监督知识蒸馏技术重叠宫颈细胞实例分割 |
开源代码、实例分割 |
52.DMNet: Difference Minimization Network for Semi-supervised Segmentation in Medical Images DMNet:用于医学图像半监督分割的差异最小化网络 |
半监督语义分割、肾脏肿瘤和脑肿瘤数据集 |
53.Double-Uncertainty Weighted Method for Semi-supervised Learning 半监督学习的双不确定度加权方法 |
师生模式、半监督学习 |
54.Shape-Aware Semi-supervised 3D Semantic Segmentation for Medical Images 用于医学图像的形状感知半监督3D语义分割 |
开源代码、半监督学习、语义分割、心房分割 |
55.Local and Global Structure-Aware Entropy Regularized Mean Teacher Model for 3D Left Atrium Segmentation 用于3D左心房分割的局部和全局结构感知熵正则化均值教师模型 |
心房分割、半监督学习 |
56.Improving Dense Pixelwise Prediction of Epithelial Density Using Unsupervised Data Augmentation for Consistency Regularization 使用用于一致性一致性的无监督数据增强来改善上皮密度的密集像素预测 |
半监督学习 |
57.Knowledge-Guided Pretext Learning for Utero-Placental Interface Detection 子宫胎盘界面检测的知识前导学习 |
表示学习、知识指导的前文字学习、小数据集学习 |
58.Self-supervised Depth Estimation to Regularise Semantic Segmentation in Knee Arthroscopy 自我监督的深度估计以使膝关节镜检查中的语义分割规则化 |
开源代码、膝关节分割、关节镜 |
59.Semi-supervised Medical Image Classification with Global Latent Mixing 具有全局潜在混合的半监督医学图像分类 |
开源代码、半监督学习 |
60.Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-supervised Medical Image Segmentation 自环不确定性:一种用于半监督医学图像分割的新型伪标签 |
半监督学习 |
61.Semi-supervised Classification of Diagnostic Radiographs with NoTeacher: A Teacher that is Not Mean 使用NOTeacher(一个不自私的老师)对诊断X射线照片进行半监督分类 |
半监督学习 |
62.Predicting Potential Propensity of Adolescents to Drugs via New Semi-supervised Deep Ordinal Regression Model 通过新的半监督深度序数回归模型预测青少年的药物潜在倾向 |
半监督学习 |
63.Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid Constrained Semi-supervised Learning and Dual-UNet 混合约束半监督学习和双UNet在3D US中进行深度Q网络驱动的导管分割 |
、unet改进、半监督学习 |
64.Domain Adaptive Relational Reasoning for 3D Multi-organ Segmentation 3D多器官分割的领域自适应关系推理 |
无监督域自适应(UDA) |
65.Realistic Adversarial Data Augmentation for MR Image Segmentation MR图像分割的真实对抗数据增强 |
数据增强 |
66.Learning to Segment Anatomical Structures Accurately from One Exemplar 从一个范例中学习准确地分割解剖结构 |
一次性解剖结构分割 |
67.Uncertainty Estimates as Data Selection Criteria to Boost Omni-Supervised Learning 不确定性估计作为数据选择标准,可促进全人监督学习 |
半监督网络优化 |
68.Extreme Consistency: Overcoming Annotation Scarcity and Domain Shifts 极端一致性:克服注释的稀缺性和域偏移 |
监督学习优化 |
69.Spatio-Temporal Consistency and Negative Label Transfer for 3D Freehand US Segmentation 3D超声分割的时空一致性和负标签传递 |
超声、肌肉分割 |
70.Characterizing Label Errors: Confident Learning for Noisy-Labeled Image Segmentation 表征标签错误:对噪音标签图像分割的自信学习 |
标签的噪声处理 |
71.Leveraging Undiagnosed Data for Glaucoma Classification with Teacher-Student Learning 利用未诊断的数据通过师生学习进行青光眼分类 |
青光眼分类 |
72.Difficulty-Aware Glaucoma Classification with Multi-rater Consensus Modeling 具有多评分者共识模型的难点性青光眼分类 |
青光眼识别 |
73.Intra-operative Forecasting of Growth Modulation Spine Surgery Outcomes with Spatio-Temporal Dynamic Networks 时空动态网络术中生长调节脊柱手术结果的术中预测 |
脊柱手术结果预测 |
74.Self-supervision on Unlabelled or Data for Multi-person 2D/3D Human Pose Estimation 用于多人2D / 3D人体姿势估计的未标记或数据的自我监督 |
人体姿态识别、自监督 |
75.Knowledge Distillation from Multi-modal to Mono-modal Segmentation Networks 从多模式分割网络到单模式分割网络的知识提取 |
解决临床上多模态联合分割某种模态数据可能没有的问题 |
76.Heterogeneity Measurement of Cardiac Tissues Leveraging Uncertainty Information from Image Segmentation 利用图像分割中的不确定性信息对心脏组织进行异质性测量 |
心脏、异质性测量 |
77.Efficient Shapley Explanation for Features Importance Estimation Under Uncertainty 不确定条件下特征重要性估计的有效Shapley解释 |
增加深度学习模型的可信任性 |
78.Cartilage Segmentation in High-Resolution 3D Micro-CT Images via Uncertainty-Guided Self-training with Very Sparse Annotation 高分辨率3D Micro-CT图像中的软骨分割,通过不确定性指导的非常稀疏的注释进行自训练 |
软骨分割、少标签训练 |
79.Probabilistic 3D Surface Reconstruction from Sparse MRI Information 稀疏MRI信息的概率3D表面重建 |
MRI的3D重建 |
80.Can You Trust Predictive Uncertainty Under Real Dataset Shifts in Digital Pathology? 您可以相信数字病理学中真实数据集变化带来的预测不确定性吗? |
估计预测的不确定性,知道何时信任模型(何时不信任模型) |
81.Deep Generative Model for Synthetic-CT Generation with Uncertainty Predictions 具有不确定性预测的合成CT生成的深度生成模型 |
MRI和CT的结合讨论 |
图像重建 | 概要 |
---|---|
82.Improving Amide Proton Transfer-Weighted MRI Reconstruction Using T2-Weighted Images 使用T2加权图像改善酰胺质子转移加权MRI重建 |
MRI重建 |
83.Compressive MR Fingerprinting Reconstruction with Neural Proximal Gradient Iterations 具有神经近邻梯度迭代的压缩MR指纹重建 |
开源代码、MRF、ProxNet |
84.Active MR k-space Sampling with Reinforcement Learning 增强学习的主动MR k空间采样 |
强化学习、加速MRI采集 |
85.Fast Correction of Eddy-Current and Susceptibility-Induced Distortions Using Rotation-Invariant Contrasts 使用旋转不变对比度快速校正涡流和磁化率引起的畸变 |
扩散MRI |
86.Joint Reconstruction and Bias Field Correction for Undersampled MR Imaging 欠采样MR成像的联合重建和偏置场校正 |
MRI重建 |
87.Joint Total Variation ESTATICS for Robust Multi-parameter Mapping 健壮的多参数映射的联合总变化ESTATICS |
定量磁共振成像 |
88.End-to-End Variational Networks for Accelerated MRI Reconstruction 用于加速MRI重建的端到端变异网络 |
加速MRI重建 |
89.3d-SMRnet: Achieving a New Quality of MPI System Matrix Recovery by Deep Learning 3d-SMRnet:通过深度学习实现MPI系统矩阵恢复的新质量 |
开源代码、MRI重建 |
90.MRI Image Reconstruction via Learning Optimization Using Neural ODEs 通过使用神经ODE进行学习优化来进行MRI图像重建 |
MRI重建 |
91.An Evolutionary Framework for Microstructure-Sensitive Generalized Diffusion Gradient Waveforms 微观结构敏感的广义扩散梯度波形的演化框架 |
弥散加权MRI |
92.Lesion Mask-Based Simultaneous Synthesis of Anatomic and Molecular MR Images Using a GAN 基于病变面膜的GAN解剖和分子MR图像的同时合成 |
病灶诊断 |
93.T2 Mapping from Super-Resolution-Reconstructed Clinical Fast Spin Echo Magnetic Resonance Acquisitions 从超分辨率重建的临床快速自旋回波磁共振采集中获取T2映射 |
MRI重建 |
94.Learned Proximal Networks for Quantitative Susceptibility Mapping 学习的量化敏感度映射的近邻网络 |
开源代码、MRI重建 |
95.Learning a Gradient Guidance for Spatially Isotropic MRI Super-Resolution Reconstruction 学习空间各向同性MRI超分辨率重建的梯度指导 |
MRI重建 |
96.Encoding Metal Mask Projection for Metal Artifact Reduction in Computed Tomography 编码金属掩模投影以减少计算机断层扫描中的金属伪像 |
减少金属伪影 |
97.Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network 通过图卷积网络加速高分辨率3D MR指纹 |
MRF |
98.Deep Attentive Wasserstein Generative Adversarial Networks for MRI Reconstruction with Recurrent Context-Awareness 具有反复情境感知的MRI重建深层专心Wasserstein生成对抗网络 |
GAN、MRI重建 |
99.Learning MRI k-Space Subsampling Pattern Using Progressive Weight Pruning 使用渐进式权重修剪学习MRI k空间采样模式 |
MRI重建 |
100.Model-Driven Deep Attention Network for Ultra-fast Compressive Sensing MRI Guided by Cross-contrast MR Image 交叉对比MR图像指导的模型驱动的深度注意网络,用于超快速压缩感MRI |
MRI重建、注意力 |
101.Simultaneous Estimation of X-Ray Back-Scatter and Forward-Scatter Using Multi-task Learning 使用多任务学习同时估计X射线后向散射和前向散射 |
MRI重建 |
预测和诊断 | 概要 |
---|---|
102.MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response MIA预后:预测治疗反应的深度学习框架 |
预测治疗后反应的框架 |
103.M2Net : Multi-modal Multi-channel Network for Overall Survival Time Prediction of Brain Tumor Patients M2Net:用于脑肿瘤患者总生存时间预测的多模式多通道网络 |
预测脑肿瘤患者生存时间 |
104.Automatic Detection of Free Intra-abdominal Air in Computed Tomography 在计算机断层扫描中自动检测腹腔内游离空气 |
腹部气体的CT检测 |
105.Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using Deep Learning with Integrative Imaging, Molecular and Demographic Data 深度学习与综合成像,分子和人口统计学数据一起预测乳腺癌对新辅助化疗的病理完全反应 |
预测化疗方法对于乳腺癌的作用性 |
106.Geodesically Smoothed Tensor Features for Pulmonary Hypertension Prognosis Using the Heart and Surrounding Tissues 大地测量平滑张量特征用于使用心脏和周围组织的肺动脉高压预后 |
开源代码、心脏MRI、肺动脉高压病理情况预测 |
107.Ovarian Cancer Prediction in Proteomic Data Using Stacked Asymmetric Convolution 蛋白质组学中使用堆叠式不对称卷积的卵巢癌预测 |
卵巢癌预测 |
108.DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and Surgical Margin via Contrast-Enhanced CT Imaging 深度预后:对比增强CT成像对胰腺癌生存率和手术边缘的术前预测 |
胰腺癌生存率预测 |
109.Holistic Analysis of Abdominal CT for Predicting the Grade of Dysplasia of Pancreatic Lesions 腹部CT整体分析预测胰腺病变的不典型增生 |
腹部CT预测胰腺病变 |
110.Feature-Enhanced Graph Networks for Genetic Mutational Prediction Using Histopathological Images in Colon Cancer 利用组织病理学图像在结肠癌中进行基因突变预测的特征增强图网络 |
结肠癌基因预测 |
111.Spatial-And-Context Aware (SpACe) “Virtual Biopsy” Radiogenomic Maps to Target Tumor Mutational Status on Structural MRI 空间和上下文感知(SpACe)“虚拟活检”放射基因组图可在结构MRI上靶向肿瘤突变状态 |
预测肿瘤基因突变 |
112.CorrSigNet: Learning CORRelated Prostate Cancer SIGnatures from Radiology and Pathology Images for Improved Computer Aided Diagnosis CorrSigNet:从放射学和病理学图像中学习与COR相关的前列腺癌的特征,以改善计算机辅助诊断 |
MRI前列腺癌预测 |
113.Preoperative Prediction of Lymph Node Metastasis from Clinical DCE MRI of the Primary Breast Tumor Using a 4D CNN 使用4D CNN从临床DCE MRI对原发性乳腺癌的淋巴结转移进行术前预测 |
淋巴结转移诊断、乳腺癌 |
114.Learning Differential Diagnosis of Skin Conditions with Co-occurrence Supervision Using Graph Convolutional Networks 使用图卷积网络通过共现监督学习皮肤状况的鉴别诊断 |
皮肤状况诊断 |
跨区域方法及重建 | 概要 |
---|---|
115.Unified Cross-Modality Feature Disentangler for Unsupervised Multi-domain MRI Abdomen Organs Segmentation 统一的跨模态特征分解器用于无监督的多域MRI腹部器官分割 |
MRI腹部器官分割 |
116.Dynamic Memory to Alleviate Catastrophic Forgetting in Continuous Learning Settings 动态记忆减轻持续学习环境中的灾难性遗忘 |
提升泛化能力 |
117.Unlearning Scanner Bias for MRI Harmonisation 取消用于MRI协调的扫描器偏差 |
开源代码、将不同属性的数据集进行组合应用 |
118.Cross-domain Medical Image Translation by Shared Latent Gaussian Mixture Model 共享潜在高斯混合模型的跨域医学图像翻译 |
细分模型、跨域适应、多模态结合看病灶 |
119.Self-supervised Skull Reconstruction in Brain CT Images with Decompressive Craniectomy 减压颅骨切除术在颅脑CT图像中的自我监督颅骨重建 |
开源代码、重建颅骨缺损 |
120.X2Teeth: 3D Teeth Reconstruction from a Single Panoramic Radiograph X2Teeth:单幅全景X射线照片中的3D牙齿重建 |
牙齿重建 |
121.Domain Adaptation for Ultrasound Beamforming 超声波束成形的域自适应 |
域自适应、超声 |
122.CDF-Net: Cross-Domain Fusion Network for Accelerated MRI Reconstruction CDF-Net:跨域融合网络,用于加速MRI重建 |
加速MRI重建 |
区域自适应 | 概要 |
---|---|
123.Improve Unseen Domain Generalization via Enhanced Local Color Transformation 通过增强的局部颜色转换来改善看不见的域泛化 |
域自适应 |
124.Transport-Based Joint Distribution Alignment for Multi-site Autism Spectrum Disorder Diagnosis Using Resting-State fMRI 基于运输的基于联合分布对准的多态性自闭症静息状态磁共振成像诊断 |
静止状态功能磁共振成像 |
125.Automatic and Interpretable Model for Periodontitis Diagnosis in Panoramic Radiographs 自动和可解释的全景X线片牙周炎诊断模型 |
X光、牙周炎诊断 |
126.Residual-CycleGAN Based Camera Adaptation for Robust Diabetic Retinopathy Screening 基于残差CycleGAN的摄像机自适应用于鲁棒性糖尿病性视网膜病变筛查 |
GAN、视网膜病变 |
127.Shape-Aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains 形状感知元学习,用于将前列腺MRI分割推广到看不见的域 |
开源代码、前列腺MRI分割、域自适应 |
128.Automatic Plane Adjustment of Orthopedic Intraoperative Flat Panel Detector CT-Volumes 骨科术中平板探测器CT量的自动平面调整 |
骨科手术、手术评估 |
129.Unsupervised Graph Domain Adaptation for Neurodevelopmental Disorders Diagnosis 无监督图域适应神经发育障碍的诊断 |
无监督、自适应 |
130.JBFnet - Low Dose CT Denoising by Trainable Joint Bilateral Filtering JBFnet-通过可训练的联合双边滤波进行低剂量CT降噪 |
CT降噪 |
131.MI 2 GAN: Generative Adversarial Network for Medical Image Domain Adaptation Using Mutual Information Constraint MI 2 GAN:使用互信息约束的医学图像域自适应生成对抗网络 |
GAN、域自适应 |
机器学习应用 | 概要 |
---|---|
132.Joint Modeling of Chest Radiographs and Radiology Reports for Pulmonary Edema Assessment 肺部水肿评估的胸部X光片和放射学报告的联合建模 |
开源代码、X光、肺部水肿评估 |
133.Domain-Specific Loss Design for Unsupervised Physical Training: A New Approach to Modeling Medical ML Solutions 无监督体育锻炼的特定领域损失设计:医学ML解决方案建模的新方法 |
无监督、损失设计 |
134.Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect 具有质量效应的生物物理脑肿瘤生长模型的多图谱校准 |
脑肿瘤 |
135.Chest X-Ray Report Generation Through Fine-Grained Label Learning 通过细粒度标签学习生成胸部X射线报告 |
细粒度、X光 |
136.Peri-Diagnostic Decision Support Through Cost-Efficient Feature Acquisition at Test-Time 通过在测试时获得经济高效的功能来进行围诊诊断决策支持 |
辅助诊断 |
137.A Deep Bayesian Video Analysis Framework: Towards a More Robust Estimation of Ejection Fraction 深入的贝叶斯视频分析框架:更加鲁棒地估计射血分数 |
心脏射血分数估计 |
138.Distractor-Aware Neuron Intrinsic Learning for Generic 2D Medical Image Classifications 干扰素意识神经元内在学习的通用2D医学图像分类 |
辅助诊断 |
139.Large-Scale Inference of Liver Fat with Neural Networks on UK Biobank Body MRI 通过英国生物库人体MRI的神经网络进行肝脂肪的大规模推断 |
开源代码、MRI肝脂肪推断 |
140.BUNET: Blind Medical Image Segmentation Based on Secure UNET BUNET:基于安全UNET的盲医学图像分割 |
图像分割安全协议 |
141.Temporal-Consistent Segmentation of Echocardiography with Co-learning from Appearance and Shape 通过外观和形状的共同学习对超声心动图进行时间一致性分割 |
超声分割 |
142.Decision Support for Intoxication Prediction Using Graph Convolutional Networks 图卷积网络的中毒预测决策支持 |
辅助中毒决策、图卷积 |
143.Latent-Graph Learning for Disease Prediction 潜图学习用于疾病预测 |
疾病预测、图卷积 |
GAN | 概要 |
---|---|
144.BR-GAN: Bilateral Residual Generating Adversarial Network for Mammogram Classification BR-GAN:用于乳房X线照片分类的双边残差对抗网络 |
GAN、乳房X光 |
145.Cycle Structure and Illumination Constrained GAN for Medical Image Enhancement 用于医学图像增强的循环结构和照明约束GAN |
解决医学图像光照不均匀问题 |
146.Generating Dual-Energy Subtraction Soft-Tissue Images from Chest Radiographs via Bone Edge-Guided GAN 通过骨边缘引导GAN从胸部X射线照片生成双能减法软组织图像 |
肺结节检测、X光肺部软组织抑制 |
147.GANDALF: Generative Adversarial Networks with Discriminator-Adaptive Loss Fine-Tuning for Alzheimer’s Disease Diagnosis from MRI GANDALF:生成器对抗网络,具有判别器自适应损失微调功能,可根据MRI诊断阿尔茨海默氏病 |
MRI生成PET从而用于阿尔兹海默的诊断 |
148.Brain MR to PET Synthesis via Bidirectional Generative Adversarial Network 通过双向生成对抗网络进行脑MR到PET合成 |
MRI生成PET |
149.AGAN: An Anatomy Corrector Conditional Generative Adversarial Network AGAN:解剖校正器条件生成对抗网络 |
超声、颈椎动脉图像 |
150.SteGANomaly: Inhibiting CycleGAN Steganography for Unsupervised Anomaly Detection in Brain MRI Steganomaly:抑制CycleGAN隐写术在脑MRI中进行无监督异常检测 |
脑部MRI、异常检测 |
151.Flow-Based Deformation Guidance for Unpaired Multi-contrast MRI Image-to-Image Translation 不成对的多对比度MRI图像到图像转换的基于流的变形指导 |
对医学图像的修复和转化 |
152.Interpretation of Disease Evidence for Medical Images Using Adversarial Deformation Fields 利用对抗变形场解释医学影像的疾病证据 |
开源代码、模型解释 |
153.Spatial-Intensity Transform GANs for High Fidelity Medical Image-to-Image Translation 用于高保真医学图像到图像翻译的空间强度变换GAN |
医学图像的优化 |
154.Graded Image Generation Using Stratified CycleGAN 使用分层CycleGAN的分级图像生成 |
医学图像的生成和优化 |
155.Graph-Based Discriminative Learning for Location Recognition 基于图的判别学习的位置识别 |
|
156.Prediction of Plantar Shear Stress Distribution by Conditional GAN with Attention Mechanism 基于注意机制的条件GAN预测足底剪应力分布 |