- 如何高效记录并整理编程学习笔记?
FrostedLotus·霜莲
数据挖掘
如何高效记录并整理编程学习笔记?在编程学习的海洋中,高效的笔记记录和整理方法就像一张珍贵的航海图,能够帮助我们在浩瀚的知识中找到方向。如何建立一个既能快速记录又易于回顾的笔记系统?如何在繁忙的学习中保持笔记的条理性?让我们一起探讨如何打造属于自己的编程学习“知识宝库”!方向一:笔记工具选择选择合适的笔记工具是高效记录编程学习笔记的第一步。不同的工具有其独特的优势,适合不同的学习风格和需求。以下是一
- 为什么 Python 是 AI 的首选语言?
文章目录一、简洁优雅,易于上手二、丰富的库和框架1.数据处理与分析2.数据可视化3.机器学习与深度学习框架三、强大的社区支持四、跨平台性和可移植性五、与其他语言的互操作性文章配套代码已上传,点击查看:https://download.csdn.net/download/2501_92578370/91180848在人工智能(AI)技术飞速发展的今天,编程语言的选择对AI开发者来说至关重要。当你翻开
- 【AI Infra】基础学习汇总篇
逆羽飘扬
AI基础知识人工智能学习
系列综述:目的:本系列是个人整理为了学习训练框架优化的,整理期间苛求每个知识点,平衡理解简易度与深入程度。来源:材料主要源于【DeepEP官方介绍】进行的,每个知识点的修正和深入主要参考各平台大佬的文章,其中也可能含有少量的个人实验自证。结语:如果有帮到你的地方,就点个赞和关注一下呗,谢谢!!!请先收藏!!!,后续继续完善和扩充(●’◡’●)文章目录一、分布式与并行基础分布式计算高性能并行GPU硬
- Llama改进之——RoPE旋转位置编码
愤怒的可乐
NLP项目实战#LLaMARoPE旋转位置编码
引言旋转位置编码(RotaryPositionEmbedding,RoPE)将绝对相对位置依赖纳入自注意力机制中,以增强Transformer架构的性能。目前很火的大模型LLaMA、QWen等都应用了旋转位置编码。之前在[论文笔记]ROFORMER中对旋转位置编码的原始论文进行了解析,重点推导了旋转位置编码的公式,本文侧重实现,同时尽量简化数学上的推理,详细推理可见最后的参考文章。复数与极坐标复数
- Llama改进之——均方根层归一化RMSNorm
愤怒的可乐
NLP项目实战#llama
引言在学习完GPT2之后,从本文开始进入Llama模型系列。本文介绍Llama模型的改进之RMSNorm(均方根层归一化)。它是由RootMeanSquareLayerNormalization论文提出来的,可以参阅其论文笔记1。LayerNorm层归一化(LayerNorm)对Transformer等模型来说非常重要,它可以帮助稳定训练并提升模型收敛性。LayerNorm针对一个样本所有特征计算
- 学习笔记-JVM GC
绝不秃头的L君
学习笔记jvmjvm.gc
1.GC分类PartialGC并不会收集整个堆空间,仅仅包括新生代和老年代,不包含永久代(元空间)。YoungGC:只收集YoungGen的垃圾收集过程。OldGC:只收集OldGen的垃圾收集过程。(只有CMS的并发收集是这个模式)MixedGC:收集整个YoungGen以及部分OldGen的垃圾收集过程。(只有G1有这个模式)FullGC收集整个堆,包括YoungGen、OldGen以及Per
- Spring Boot拦截器详解:原理、实现与应用场景
嘵奇
提升自己springboot后端java
精心整理了最新的面试资料和简历模板,有需要的可以自行获取点击前往百度网盘获取点击前往夸克网盘获取一、拦截器概述拦截器(Interceptor)是SpringMVC框架中用于对请求进行预处理和后处理的组件,主要作用于Controller层。相较于Filter(过滤器)作用于更底层,拦截器可以获取Spring的上下文信息,更适合处理与业务逻辑相关的请求拦截。拦截器与过滤器的区别:作用层面:Filter
- 【学习笔记】jvm
liu1251303815
学习笔记jvm
1、jvm基础1.1什么是jvm?jvm是一种规范。jvm是一种什么样的规范?具体实现:hotspot2classFileFormat3:类加载-初始化3.1、loading加载class文件到内存中3.1.1引起类加载的情况new对象时调用静态属性,静态方法时。(访问staticfinal变量除外staticfinal修饰的是基本数据类型,或者字符串类型时,会替换为常量。比如有一个类A{stat
- C#基础笔记
gmf532196
C#CLRc#数据库
普通方法中获取类名:this.GetType().Name静态方法中获取类名:MethodBase.GetCurrentMethod().ReflectedType.Name1.获取当前执行方法的类名:System.Reflection.MethodBase.GetCurrentMethod().DeclaringType.Name;2.获取当前成员的名称:MethodBase.GetCurren
- ChatGPT、DeepSeek等大语言模型技术教程
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 【机器学习】什么是逻辑回归?从入门到精通:掌握逻辑回归与二分类问题的解决之道
宸码
模式识别机器学习机器学习python逻辑回归分类人工智能算法
从入门到精通:掌握逻辑回归与二分类问题的解决之道引言1.1逻辑回归简介1.2逻辑回归的应用场景逻辑回归基本原理2.1逻辑回归概述逻辑回归的基本思想预测类别的概率2.2线性模型与Sigmoid函数线性模型Sigmoid函数Sigmoid函数的性质为什么选择Sigmoid函数2.3逻辑回归的输出:概率值分类决策代价函数与优化数学基础3.1逻辑回归的假设与目标假设目标3.2对数似然函数概率模型对数似然函
- Python爬虫实战:研究httplib2库相关技术
ylfhpy
爬虫项目实战python爬虫phphttplib2
1.引言1.1研究背景与意义随着互联网的快速发展,网络上的信息量呈爆炸式增长。如何从海量的网页中高效地获取有价值的数据,成为了当前信息技术领域的一个重要研究课题。网络爬虫作为一种自动获取互联网信息的程序,能够按照一定的规则,自动地抓取网页内容并提取和整理信息,为信息检索、数据分析、机器学习等领域提供了丰富的数据来源。在电子商务领域,爬虫可以用于价格监控、竞品分析和市场调研;在学术研究中,爬虫可以帮
- C语言内存的“禁区”:为何不能返回局部变量的地址?
web安全工具库
2025C++学习c语言开发语言
资料合集下载链接:https://pan.quark.cn/s/472bbdfcd014在C语言编程中,指针和内存管理是两大核心,也是许多新手甚至有经验的开发者容易踩坑的地方。一个经典的问题就是:“为什么我的函数返回一个指针,有时候能用,有时候程序就崩溃了?”答案往往藏在C语言的内存分区模型中。今天,我们就根据一份课堂笔记,深入探讨一个关键的“禁区”:从函数返回局部变量的地址,并搞清楚为什么有些地
- 2.Golang goroutine详解:轻量级并发的艺术
GO兔
Go基础golang开发语言
欢迎大家点赞,收藏,评论,转发,你们的支持是我最大的写作动力作者:GO兔博客:https://luckxgo.cn引言在Golang的世界里,有个小家伙彻底改变了我们编写并发程序的方式——它就是goroutine!如果你还在用传统线程写并发,那简直就像在用牛拉火车。今天这篇笔记,咱们就来揭开goroutine的神秘面纱,看看这个轻量级的并发单元是如何让Go程序高效运行的。技术要点1.什么是goro
- 机器学习笔记:MATLAB实践
techDM
机器学习笔记matlabMatlab
在机器学习领域,MATLAB是一种功能强大且广泛使用的工具,它提供了许多内置函数和工具箱,方便开发者进行各种机器学习任务。本文将介绍一些常见的机器学习任务,并提供相应的MATLAB源代码示例。数据预处理在进行机器学习之前,通常需要对原始数据进行预处理。这包括数据清洗、特征选择、特征缩放和数据划分等步骤。%导入数据data=readmatrix('data.csv');%数据清洗cleaned_da
- vue3学习笔记
朝凡FR
其他学习笔记vue.js前端
目录vue3学习笔记数据绑定'v-bind'简写为':',语法v-bind:id='变量'v-on指令通过v-on:event="method"语法工作,简写语法:@event="method"v-model绑定到你在其上设置的数据属性,并使其与````保持同步v-model修饰符.trim,将删除输入之前或之后的空格;.lazy修饰符导致v-model使用change事件代替使用自定义事件将数据
- Python爬虫网安-beautiful soup+示例
目录beautifulsoup:解析器:节点选择器:嵌套选择:关联选择:子节点:子孙节点:父节点:祖先节点:兄弟节点:上一个兄弟节点:下一个兄弟节点:后面所有的兄弟节点:前面所有的兄弟节点:方法选择器:CSS选择器:beautifulsoup:bs4用于解析htmlandxml文档解析器:html.parser、lxml解析器和XML的内置解析器文档遍历:跟xpath差不多,也是整理成树形结构搜索
- 学习记录:DAY35
《技术学习笔记:Swagger、SpringBoot配置与AOP实践》前言昨天熬死我了,md,舍友不睡觉搁那敲鼠标,byd哪里买的那么响的鼠标,铛铛铛把我血压都敲高了,我想找都找不到。又要在睡眠上投资了。开始调整生物钟的计划,今天很困,但是必须顶到晚上才能睡觉,再顶个一俩天就好了。byd舍友最好早点回去,不然留你和我,你看我把不把你当日本人整。日程9:00,很困,先趁着还有点状态学会习。22:42
- 学习记录:DAY33
2301_79760424
每日学习记录学习
前端学习之旅:Node.js模块与HTTP服务前言----------------------------------------又是许久许久没有更新,在苦哈哈弄完期末,然后花一天时间把计算机网络课设写了之后。现在又即将回到前后端学习的状态。我想现在正处于一个调整期的状态。一个是随着blog的不断堆积,有必要把它们整理成更具有逻辑性的知识片。另一个是我需要了解当前前后端需要学习的路线,这样我可以有
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- 从数据抓取到智能分类:用 LangChain + 爬虫构建自动化工作流的实战笔记
大模型之路
大模型(LLM)人工智能langchain
一、从人工到自动化的迫切需求在数字化时代,信息的快速获取与处理成为个人和组织高效运转的关键。然而,许多重复性强、耗时长且缺乏创造性的任务,如定期收集和整理网络信息并制作成特定格式的内容,依然占据着人们大量的时间和精力。本文作者就面临这样的困境:每两周需花费数小时访问多个大学网站,提取活动信息,手动将其整理成繁琐的HTML表格,并确保在Outlook中格式正确无误。这一过程不仅涉及大量枯燥的重复劳动
- 学习笔记(28):随机噪声的原理、作用及代码实现详解
宁儿数据安全
#机器学习学习笔记python
学习笔记(28):随机噪声的原理、作用及代码实现详解一、什么是随机噪声?为什么需要添加?在机器学习中,随机噪声是指数据中无法用特征解释的随机波动,通常符合某种概率分布(如正态分布)。在房价模拟中添加噪声的核心原因如下:1.模拟真实世界的不确定性真实房价除了受面积、房龄影响,还受装修情况、学区、交通、政策等未被建模的特征影响,这些因素的综合效应可抽象为“噪声”。示例:两套面积和房龄相同的房子,房价可
- 学习笔记(29):训练集与测试集划分详解:train_test_split 函数深度解析
宁儿数据安全
#机器学习学习笔记深度学习
学习笔记(29):训练集与测试集划分详解:train_test_split函数深度解析一、为什么需要划分训练集和测试集?在机器学习中,模型需要经历两个核心阶段:训练阶段:用训练集数据学习特征与目标值的映射关系(如线性回归的权重)。测试阶段:用测试集评估模型在未见过的数据上的表现,避免“过拟合”(模型只记住训练数据的噪声,无法泛化到新数据)。类比场景:学生通过“练习题”(训练集)学习知识,再通过“考
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-split_dota.py
红色的山茶花
YOLO笔记深度学习
split_dota.pyultralytics\data\split_dota.py目录split_dota.py1.所需的库和模块2.defbbox_iof(polygon1:np.ndarray,bbox2:np.ndarray,eps:float=1e-6)->np.ndarray:3.defload_yolo_dota(data_root:str,split:str="train")->
- Python语法笔记
XiTang1
python笔记开发语言
Python的基本语法1.计算机相关的名词知识1.1计算机的组成计算机之父:冯.诺依曼,根据冯.诺依曼结构体系,计算机是分为5部分的1.输入设备把信息传递到计算机中,比如键盘、鼠标2.输出设备信息从计算机中传递出来,比如音响、显示器、打印机等等3.存储区计算机被发明出来就是用于数据的存储和计算的计算机上有两个存储数据的设备:内存、硬盘硬盘:电脑上的磁盘分区,存储在硬盘中的数据都是持久化存储【只要不
- 常见JAVA集合面试题(自用整理,持续更新)
一、简要介绍Java集合框架的整体架构1.Java集合框架主要分为两大接口体系:Collection和Map。2.Collection是单列集合的根接口,下面又有三个子接口,分别是List(有序、可重复)、Set(无序、不可重复)和Queue(队列)。3.Map是双列集合的根接口,用于存储键值对。4.以下是java集合的基础架构图5.Java集合框架的核心继承关系图(文本描述版)├─Collect
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-augment.py
augment.pyultralytics\data\augment.py目录augment.py1.所需的库和模块2.classBaseTransform:3.classCompose:4.classBaseMixTransform:5.classCutMix(BaseMixTransform):6.classCopyPaste(BaseMixTransform):7.defv8_transfo
- 机器学习:集成算法的装袋法(Bagging):随机森林(Random Forest)
rubyw
#概念及理论机器学习算法随机森林
随机森林(RandomForest)是一种集成学习方法,通过构建多个决策树并结合其预测结果来提升模型的性能和稳定性。它由LeoBreiman于2001年提出,广泛应用于分类和回归任务。以下是随机森林的详细介绍,包括其基本概念、构建过程、优缺点及应用场景。基本概念随机森林是一种基于决策树的集成算法,通过生成多棵决策树,并将这些树的预测结果结合起来,以提高整体模型的预测准确性和稳定性。每棵决策树都是在
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep