因为之前都是直接使用python
编程来实现目标检测,而且是直接使用模型。于是就想了解一下使用c++
语言如何进行目标检测,也能帮助自己更好的熟悉c++
的语法。简单起见,使用opencv
的dnn
模块调用yolo
模型的方式是个不错的选择。
我是在win10
系统中使用vs2019
运行的程序,所以需要进行必要的环境配置,比如安装opencv
以及在vs2019
中添加opencv
。详细可参考以下文章:
https://blog.csdn.net/qq321772514/article/details/90514538
以下代码来自下面这篇文章(工程的Github链接也在里面):
https://blog.csdn.net/nihate/article/details/108850477
1、yolo.h
#pragma once
#include
#include
#include
#include
#include
#include
using namespace cv;
using namespace dnn;
using namespace std;
struct Net_config
{
float confThreshold; // Confidence threshold
float nmsThreshold; // Non-maximum suppression threshold
int inpWidth; // Width of network's input image
int inpHeight; // Height of network's input image
string classesFile;
string modelConfiguration;
string modelWeights;
string netname;
};
class YOLO
{
public:
YOLO(Net_config config);
void detect(Mat& frame);
private:
float confThreshold;
float nmsThreshold;
int inpWidth;
int inpHeight;
char netname[20];
vector<string> classes;
Net net;
void postprocess(Mat& frame, const vector<Mat>& outs);
void drawPred(int classId, float conf,
int left, int top, int right, int bottom, Mat& frame);
};
Net_config yolo_nets[4] = {
{0.5, 0.4, 416, 416,"coco.names",
"yolov3/yolov3.cfg", "yolov3/yolov3.weights", "yolov3"},
{0.5, 0.4, 608, 608,"coco.names",
"yolov4/yolov4.cfg", "yolov4/yolov4.weights", "yolov4"},
{0.5, 0.4, 320, 320,"coco.names",
"yolo-fastest/yolo-fastest-xl.cfg",
"yolo-fastest/yolo-fastest-xl.weights", "yolo-fastest"},
{0.5, 0.4, 320, 320,"coco.names",
"yolobile/csdarknet53s-panet-spp.cfg",
"yolobile/yolobile.weights", "yolobile"}
};
2、main_yolo.cpp
#include "yolo.h"
YOLO::YOLO(Net_config config)
{
cout << "Net use " << config.netname << endl;
this->confThreshold = config.confThreshold;
this->nmsThreshold = config.nmsThreshold;
this->inpWidth = config.inpWidth;
this->inpHeight = config.inpHeight;
strcpy_s(this->netname, config.netname.c_str());
ifstream ifs(config.classesFile.c_str());
string line;
while (getline(ifs, line)) this->classes.push_back(line);
this->net = readNetFromDarknet(config.modelConfiguration, config.modelWeights);
this->net.setPreferableBackend(DNN_BACKEND_OPENCV);
this->net.setPreferableTarget(DNN_TARGET_CPU);
}
void YOLO::postprocess(Mat& frame, const vector<Mat>& outs)
// Remove the bounding boxes with low confidence using non-maxima suppression
{
vector<int> classIds;
vector<float> confidences;
vector<Rect> boxes;
//不同的模型的输出可能不一样,yolo的输出outs是[[[x,y,w,h,...],[],...[]]],
//之所以多一维,是因为模型输入的frame是四维的,第一维表示帧数,如果只有一张图片推理,那就是1
for (size_t i = 0; i < outs.size(); ++i)
{
// Scan through all the bounding boxes output from the network and keep only the
// ones with high confidence scores. Assign the box's class label as the class
// with the highest score for the box.
//data是指针,每次从存储一个框的信息的地址跳到另一个框的地址
float* data = (float*)outs[i].data;
for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
{
Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
Point classIdPoint;
double confidence;
// Get the value and location of the maximum score
// 找到最大的score的索引,刚好对应80个种类的索引
minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
if (confidence > this->confThreshold)
{
int centerX = (int)(data[0] * frame.cols);
int centerY = (int)(data[1] * frame.rows);
int width = (int)(data[2] * frame.cols);
int height = (int)(data[3] * frame.rows);
int left = centerX - width / 2;
int top = centerY - height / 2;
classIds.push_back(classIdPoint.x);
confidences.push_back((float)confidence);
boxes.push_back(Rect(left, top, width, height));
}
}
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector<int> indices;
NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
for (size_t i = 0; i < indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
this->drawPred(classIds[idx], confidences[idx], box.x, box.y,
box.x + box.width, box.y + box.height, frame);
}
}
void YOLO::drawPred(int classId, float conf,
int left, int top, int right, int bottom, Mat& frame)
// Draw the predicted bounding box
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 3);
//Get the label for the class name and its confidence
string label = format("%.2f", conf);
if (!this->classes.empty())
{
CV_Assert(classId < (int)this->classes.size());
label = this->classes[classId] + ":" + label;
}
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75,
Scalar(0, 255, 0), 1);
}
void YOLO::detect(Mat& frame)
{
Mat blob;
blobFromImage(frame, blob, 1 / 255.0,
Size(this->inpWidth, this->inpHeight),
Scalar(0, 0, 0), true, false);
this->net.setInput(blob);
vector<Mat> outs;
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
this->postprocess(frame, outs);
vector<double> layersTimes;
double freq = getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
string label = format("%s Inference time : %.2f ms", this->netname, t);
putText(frame, label, Point(0, 30), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
//imwrite(format("%s_out.jpg", this->netname), frame);
}
int main()
{
YOLO yolo_model(yolo_nets[0]);
string imgpath = "bus.jpg";
Mat srcimg = imread(imgpath);
yolo_model.detect(srcimg);
static const string kWinName = "Deep learning object detection in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, srcimg);
waitKey(0);
destroyAllWindows();
}