给出序列 [ a 0 , a 2 , a 3 , . . . , a n ] [a_{0},a_{2},a_{3},...,a_{n}] [a0,a2,a3,...,an],求方程
a 0 + a 1 x + a 2 x 2 + . . . + a n x n = 0 a_{0}+a_{1}x+a_{2}x^{2}+...+a_{n}x^{n}=0 a0+a1x+a2x2+...+anxn=0
的所有有理数解
设 x = p q x=\frac{p}{q} x=qp是一个解,并且 g c d ( p , q ) = 1 gcd(p,q)=1 gcd(p,q)=1,代入得到
∑ i = 0 n a i ( p q ) i = 0 \sum_{i=0}^{n}a_{i}(\frac{p}{q})^{i}=0 i=0∑nai(qp)i=0
通分得到
∑ i = 0 n a i p i q n − i = 0 \sum_{i=0}^{n}a_{i}p^{i}q^{n-i}=0 i=0∑naipiqn−i=0
在模 p p p时,有
∑ i = 0 n a i p i q n − i ≡ 0 ( m o d p ) ⇒ a 0 q n ≡ 0 ( m o d p ) \sum_{i=0}^{n}a_{i}p^{i}q^{n-i} \equiv 0\ (mod\ p)\Rightarrow a_{0}q^{n}\equiv 0\ (mod\ p) i=0∑naipiqn−i≡0 (mod p)⇒a0qn≡0 (mod p)
在模 q q q时,有
∑ i = 0 n a i p i q n − i ≡ 0 ( m o d q ) ⇒ a n p n ≡ 0 ( m o d q ) \sum_{i=0}^{n}a_{i}p^{i}q^{n-i} \equiv 0\ (mod\ q)\Rightarrow a_{n}p^{n}\equiv 0\ (mod\ q) i=0∑naipiqn−i≡0 (mod q)⇒anpn≡0 (mod q)
由于 g c d ( p , q ) = 1 gcd(p,q)=1 gcd(p,q)=1,于是一定存在
p ∣ a 0 , q ∣ a n p|a_{0},q|a_{n} p∣a0,q∣an
只需要枚举 a 0 , a n a_{0},a_{n} a0,an的因子分别作为 p , q p,q p,q,然后检查原式是否成立即可。原式可能非常大,一种检验的方法是在多模数下运算值都为 0 0 0
// #include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using ll=long long;
const int N=105,inf=0x3fffffff;
const long long INF=0x3fffffffffffffff,mod1=1e9+7,mod2=1e9+9;
template<class T>
T abs(T x){return x>=0?x:-x;}
int n,a[N];
vector<pair<int,int>>ans;
ll qpow(ll a,ll b,ll mod)
{
ll ret=1,base=a;
while(b)
{
if(b&1) ret=ret*base%mod;
base=base*base%mod;
b>>=1;
}
return ret;
}
ll qm(ll x,ll mod)
{
return (x%mod+mod)%mod;
}
bool check(int p,int q,ll mod)
{
ll ret=0;
for(int i=0;i<=n;i++) ret=(ret+qm(1ll*a[i]*qpow(p,i,mod)%mod*qpow(q,n-i,mod)%mod,mod))%mod;
return ret==0;
}
void solve(int p,int q)
{
int tmp=__gcd(abs(p),abs(q));
p/=tmp; q/=tmp;
if(check(p,q,mod1)&&check(p,q,mod2)) ans.push_back(make_pair(p,q));
}
int main()
{
#ifdef stdjudge
freopen("in.txt","r",stdin);
#endif
cin>>n;
for(int i=0;i<=n;i++)
{
cin>>a[i];
if(a[i]==0) n--,i--,ans.push_back(make_pair(0,1));
}
for(int i=1,limit1=sqrt(abs(a[0]));i<=limit1;i++)
{
if(a[0]%i) continue;
for(int j=1,limit2=sqrt(abs(a[n]));j<=limit2;j++)
{
if(a[n]%j||__gcd(i,j)!=1) continue;
solve(i,j); solve(-i,j);
solve(a[0]/i,j); solve(-a[0]/i,j);
solve(i,a[n]/j); solve(-i,a[n]/j);
solve(a[0]/i,a[n]/j); solve(-a[0]/i,a[n]/j);
}
}
for(auto i:ans)
{
if(i.first<0&&i.second<0) i.first=-i.first,i.second=-i.second;
else if(i.second<0) i.first=-i.first,i.second=-i.second;
}
sort(ans.begin(),ans.end(),[&](pair<int,int>&x,pair<int,int>&y){
return 1.0*x.first/x.second<1.0*y.first/y.second;
});
ans.erase(unique(ans.begin(),ans.end(),[&](pair<int,int>&x,pair<int,int>&y){
return fabs(1.0*x.first/x.second-1.0*y.first/y.second)<1e-8;
}),ans.end());
cout<<ans.size()<<endl;
for(auto i:ans)
{
if(i.first<0&&i.second<0) i.first=-i.first,i.second=-i.second;
else if(i.second<0) i.first=-i.first,i.second=-i.second;
if(i.second>1) printf("%d/%d\n",i.first,i.second);
else printf("%d\n",i.first);
}
return 0;
}