与 xgboost 类似,LightGBM包含原生接口和 sklearn 风格接口两种,并且二者都实现了分类和回归的功能。如果想了解一些理论性的内容,可以看看之前的文章:LightGBM 相关知识理解
boosting / boost / boosting_type
用于指定弱学习器的类型,默认值为 ‘gbdt’,表示使用基于树的模型进行计算。还可以选择为 ‘gblinear’ 表示使用线性模型作为弱学习器。
可选的参数值有:
推荐设置为 'gbdt’
objective / application
用于指定学习任务及相应的学习目标,常用的可选参数值如下:
num_class
用于设置多分类问题的类别个数。
min_child_samples
叶节点样本的最少数量,默认值20,用于防止过拟合。
learning_rate / eta
LightGBM 不完全信任每个弱学习器学到的残差值,为此需要给每个弱学习器拟合的残差值都乘上取值范围在(0, 1] 的 eta,设置较小的 eta 就可以多学习几个弱学习器来弥补不足的残差。
推荐的候选值为:[0.01, 0.015, 0.025, 0.05, 0.1]
max_depth
指定树的最大深度,默认值为-1,表示不做限制,合理的设置可以防止过拟合。
推荐的数值为:[3, 5, 6, 7, 9, 12, 15, 17, 25]。
num_leaves
指定叶子的个数,默认值为31,此参数的数值应该小于 2 m a x _ d e p t h 2^{max\_depth} 2max_depth。
feature_fraction / colsample_bytree
构建弱学习器时,对特征随机采样的比例,默认值为1。
推荐的候选值为:[0.6, 0.7, 0.8, 0.9, 1]
bagging_fraction / subsample
默认值1,指定采样出 subsample * n_samples 个样本用于训练弱学习器。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。 取值在(0, 1)之间,设置为1表示使用所有数据训练弱学习器。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。
注意: bagging_freq 设置为非0值时才生效。
推荐的候选值为:[0.6, 0.7, 0.8, 0.9, 1]
bagging_freq / subsample_freq
数值型,默认值0,表示禁用样本采样。如果设置为整数 z ,则每迭代 k 次执行一次采样。
lambda_l1
L1正则化权重项,增加此值将使模型更加保守。
推荐的候选值为:[0, 0.01~0.1, 1]
lambda_l2
L2正则化权重项,增加此值将使模型更加保守。
推荐的候选值为:[0, 0.1, 0.5, 1]
min_gain_to_split / min_split_gain
指定叶节点进行分支所需的损失减少的最小值,默认值为0。设置的值越大,模型就越保守。
**推荐的候选值为:[0, 0.05 ~ 0.1, 0.3, 0.5, 0.7, 0.9, 1] **
min_sum_hessian_in_leaf / min_child_weight
指定孩子节点中最小的样本权重和,如果一个叶子节点的样本权重和小于min_child_weight则拆分过程结束,默认值为1。
推荐的候选值为:[1, 3, 5, 7]
metric
用于指定评估指标,可以传递各种评估方法组成的list。常用的评估指标如下:
seed / random_state
指定随机数种子。
以lightgbm.train为主,参数及默认值如下:
lightgbm.train(params, train_set, num_boost_round=100, valid_sets=None, valid_names=None, fobj=None, feval=None, init_model=None, feature_name='auto', categorical_feature='auto', early_stopping_rounds=None, evals_result=None, verbose_eval=True, learning_rates=None, keep_training_booster=False, callbacks=None)
1,params
字典类型,用于指定各种参数,例如:{‘booster’:‘gbtree’,‘eta’:0.1}
2,train_set
用于训练的数据,通过给下面的方法传递数据和标签来构造:
train_data = lgb.Dataset(train_x, train_y)
3,num_boost_round
指定最大迭代次数,默认值为10
4,valid_sets
列表类型,用于指定训练过程中用于评估的数据及数据的名称。例如:[train_data, valid_data]
train_data = lgb.Dataset(train_x, train_y)
valid_data = lgb.Dataset(valid_x, valid_y, reference=train)
5,fobj
可以指定二阶可导的自定义目标函数。
6,feval
自定义评估函数。
7,categorical_feature
指定哪些是类别特征。
8,early_stopping_rounds
指定迭代多少次没有得到优化则停止训练,默认值为None,表示不提前停止训练。
注意:valid_sets 必须非空才能生效,如果有多个数据集,则以最后一个数据集为准。
9,verbose_eval
可以是bool类型,也可以是整数类型。如果设置为整数,则每间隔verbose_eval次迭代就输出一次信息。
10,init_model
加载之前训练好的 lgb 模型,用于增量训练。
predict(data, num_iteration=None)
参数说明:
注意,对于分类问题,predict 方法返回的是属于各个类别的概率,需要执行下面的语句才能获取到预测的类别:
y_pred = model.predict(X_test)
y_pred = np.argmax(y_pred, axis=1)
代码如下:
from lightgbm import plot_importance
# 显示重要特征,max_num_features 指定显示多少个特征
plot_importance(lgb_model, max_num_features)
plt.show()
from sklearn.datasets import load_iris
import lightgbm as lgb
from lightgbm import plot_importance
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集
iris = load_iris()
X,y = iris.data,iris.target
# 数据集分割
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=123457)
# 参数
params = {
'booster': 'gbtree',
'objective': 'multiclass',
'num_class': 3,
'num_leaves': 31,
'subsample': 0.8,
'bagging_freq': 1,
'feature_fraction ': 0.8,
'slient': 1,
'learning_rate ': 0.01,
'seed': 0
}
# 构造训练集
dtrain = lgb.Dataset(X_train,y_train)
dtest = lgb.Dataset(X_test,y_test)
num_rounds = 500
# xgboost模型训练
model = lgb.train(params,dtrain, num_rounds, valid_sets=[dtrain, dtest],
verbose_eval=100, early_stopping_rounds=100)
# 对测试集进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, np.argmax(y_pred, axis=1))
print('accuarcy:%.2f%%'%(accuracy*100))
# 显示重要特征
plot_importance(model)
plt.show()
输出结果:
Training until validation scores don't improve for 100 rounds. [100] training's multi_logloss: 0.0200407 valid_1's multi_logloss: 0.16259 Early stopping, best iteration is: [58] training's multi_logloss: 0.0522685 valid_1's multi_logloss: 0.113599 accuarcy:96.67%
from sklearn.datasets import load_boston
import lightgbm as lgb
from lightgbm import plot_importance
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载波士顿房价预测数据集
boston = load_boston()
X,y = boston.data,boston.target
# 数据集分割
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=0)
params = {
'booster': 'gbtree',
'objective': 'regression',
'num_leaves': 31,
'subsample': 0.8,
'bagging_freq': 1,
'feature_fraction ': 0.8,
'slient': 1,
'learning_rate ': 0.01,
'seed': 0
}
# 构造训练集
dtrain = lgb.Dataset(X_train,y_train)
dtest = lgb.Dataset(X_test,y_test)
num_rounds = 500
# xgboost模型训练
model = lgb.train(params,dtrain, num_rounds, valid_sets=[dtrain, dtest],
verbose_eval=100, early_stopping_rounds=100)
# 对测试集进行预测
y_pred = model.predict(X_test)
print('mse:', mean_squared_error(y_test, y_pred))
# 显示重要特征
plot_importance(model)
plt.show()
输出:
Training until validation scores don't improve for 100 rounds. [100] training's l2: 1.98858 valid_1's l2: 22.4685 [200] training's l2: 0.76671 valid_1's l2: 21.9116 Early stopping, best iteration is: [141] training's l2: 1.29078 valid_1's l2: 21.7546 mse: 21.754638427136342
LGBMClassifier的引入以及重要参数的默认值如下:
from lightgbm import LGBMClassifier
# 重要参数:
lgb_model = LGBMClassifier(
boosting_type='gbdt',
num_leaves=31,
max_depth=-1,
learning_rate=0.1,
n_estimators=100,
objective='binary', # 默认是二分类
min_split_gain=0.0,
min_child_samples=20,
subsample=1.0,
subsample_freq=0,
colsample_bytree=1.0,
reg_alpha=0.0,
reg_lambda=0.0,
random_state=None,
silent=True
)
其中绝大多数的参数在上文已经说明,不再赘述。
与原生的LightGBM相比,LGBMClassifier并不是调用train方法进行训练,而是使用fit方法:
lgb_model.fit(
X, # array, DataFrame 类型
y, # array, Series 类型
eval_set=None, # 用于评估的数据集,例如:[(X_train, y_train), (X_test, y_test)]
eval_metric=None, # 评估函数,字符串类型,例如:'l2', 'logloss'
early_stopping_rounds=None,
verbose=True # 设置为正整数表示间隔多少次迭代输出一次信息
)
预测的方法有两种:
lgb_model.predict(data) # 返回预测值
lgb_model.predict_proba(data) # 返回各个样本属于各个类别的概率
from lightgbm import LGBMClassifier
from sklearn.datasets import load_iris
from lightgbm import plot_importance
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载样本数据集
iris = load_iris()
X,y = iris.data,iris.target
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=12343)
model = LGBMClassifier(
max_depth=3,
learning_rate=0.1,
n_estimators=200, # 使用多少个弱分类器
objective='multiclass',
num_class=3,
booster='gbtree',
min_child_weight=2,
subsample=0.8,
colsample_bytree=0.8,
reg_alpha=0,
reg_lambda=1,
seed=0 # 随机数种子
)
model.fit(X_train,y_train, eval_set=[(X_train, y_train), (X_test, y_test)],
verbose=100, early_stopping_rounds=50)
# 对测试集进行预测
y_pred = model.predict(X_test)
model.predict_proba
#计算准确率
accuracy = accuracy_score(y_test,y_pred)
print('accuracy:%3.f%%'%(accuracy*100))
# 显示重要特征
plot_importance(model)
plt.show()
输出:
Training until validation scores don't improve for 50 rounds. Early stopping, best iteration is: [42] training's multi_logloss: 0.0831629 valid_1's multi_logloss: 0.183711 accuracy: 97%
XGBRegressor与XGBClassifier类似,其引入以及重要参数的默认值如下:
from lightgbm import LGBMRegressor
# 重要参数:
lgb_model = LGBMRegressor(
boosting_type='gbdt',
num_leaves=31,
max_depth=-1,
learning_rate=0.1,
n_estimators=100,
objective='regression', # 默认是二分类
min_split_gain=0.0,
min_child_samples=20,
subsample=1.0,
subsample_freq=0,
colsample_bytree=1.0,
reg_alpha=0.0,
reg_lambda=0.0,
random_state=None,
silent=True
)
其 fit 方法、predict方法与 LGBMClassifier几乎相同,不再重复说明。
from lightgbm import LGBMRegressor
from lightgbm import plot_importance
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error
# 导入数据集
boston = load_boston()
X ,y = boston.data,boston.target
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=0)
model = LGBMRegressor(
boosting_type='gbdt',
num_leaves=31,
max_depth=-1,
learning_rate=0.1,
n_estimators=100,
objective='regression', # 默认是二分类
min_split_gain=0.0,
min_child_samples=20,
subsample=1.0,
subsample_freq=0,
colsample_bytree=1.0,
reg_alpha=0.0,
reg_lambda=0.0,
random_state=None,
silent=True
)
model.fit(X_train,y_train, eval_set=[(X_train, y_train), (X_test, y_test)],
verbose=100, early_stopping_rounds=50)
# 对测试集进行预测
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test,y_pred)
print('mse', mse)
# 显示重要特征
plot_importance(model)
plt.show()
输出:
Training until validation scores don't improve for 50 rounds. [100] training's l2: 1.99687 valid_1's l2: 24.4987 Did not meet early stopping. Best iteration is: [100] training's l2: 1.99687 valid_1's l2: 24.4987 mse 24.498696726728348
(1)选择较高的学习率,例如0.1,这样可以减少迭代用时。
(2)然后对 max_depth, num_leaves, min_data_in_leaf, min_split_gain, subsample, colsample_bytree 这些参数进行调整。
其中,num_leaves < 2 m a x _ d e p t h 2^{max\_depth} 2max_depth。而 min_data_in_leaf 是一个很重要的参数, 也叫min_child_samples,它的值取决于训练数据的样本个树和num_leaves. 将其设置的较大可以避免生成一个过深的树, 但有可能导致欠拟合。
其他参数的合适候选值为:
(3)调整正则化参数 reg_lambda , reg_alpha,这些参数的合适候选值为:
(4)降低学习率,继续调整参数,学习率合适候选值为:[0.01, 0.015, 0.025, 0.05, 0.1]
from sklearn.datasets import load_iris
import lightgbm as lgb
from sklearn.model_selection import GridSearchCV # Perforing grid search
from sklearn.model_selection import train_test_split
# 加载样本数据集
iris = load_iris()
X,y = iris.data,iris.target
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=12343)
train_x, valid_x, train_y, valid_y = train_test_split(X, y, test_size=0.333, random_state=0) # 分训练集和验证集
train = lgb.Dataset(train_x, train_y)
valid = lgb.Dataset(valid_x, valid_y, reference=train)
parameters = {
'max_depth': [15, 20, 25, 30, 35],
'learning_rate': [0.01, 0.02, 0.05, 0.1, 0.15],
'feature_fraction': [0.6, 0.7, 0.8, 0.9, 0.95],
'bagging_fraction': [0.6, 0.7, 0.8, 0.9, 0.95],
'bagging_freq': [2, 4, 5, 6, 8],
'lambda_l1': [0, 0.1, 0.4, 0.5, 0.6],
'lambda_l2': [0, 10, 15, 35, 40],
'cat_smooth': [1, 10, 15, 20, 35]
}
gbm = LGBMClassifier(max_depth=3,
learning_rate=0.1,
n_estimators=200, # 使用多少个弱分类器
objective='multiclass',
num_class=3,
booster='gbtree',
min_child_weight=2,
subsample=0.8,
colsample_bytree=0.8,
reg_alpha=0,
reg_lambda=1,
seed=0 # 随机数种子
)
# 有了gridsearch我们便不需要fit函数
gsearch = GridSearchCV(gbm, param_grid=parameters, scoring='accuracy', cv=3)
gsearch.fit(train_x, train_y)
print("Best score: %0.3f" % gsearch.best_score_)
print("Best parameters set:")
best_parameters = gsearch.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
print("\t%s: %r" % (param_name, best_parameters[param_name]))
参考文章:
Parameters
lightgbm.LGBMClassifier
lightgbm.LGBMRegressor
LightGBM核心解析与调参