学习pytorch——了解深度学习一般框架

学习pytorch——了解深度学习一般框架

python的安装–anaconda

1 下载anaconda

环境配置

Anaconda_Home
E:\dev\Anaconda3

path:
%Anaconda_Home%

%Anaconda_Home%\Library\bin

%Anaconda_Home%\Scripts

%Anaconda_Home%\Library\mingw-w64\bin

常用命令

查看所有虚拟环境: conda info -e

查看当前环境的包:conda list

启动虚拟环境:activate 环境名

创建:conda create -n 环境名 ,如,conda create -n rcnn python=3.6

删除:conda remove -n rcnn --all

配置anaconda缓存目录

修改环境名称在environments中

使用命令查看当前conda参数conda info

  active environment : base
    active env location : E:\dev\Anaconda3
            shell level : 1
       user config file : C:\Users\65782\.condarc          #配置的镜像源
 populated config files : C:\Users\65782\.condarc     #environments.txt包含了环境名称(可修改)C:\Users\\.conda\environments.txt
          conda version : 4.10.1
    conda-build version : 3.21.4
         python version : 3.8.8.final.0
       virtual packages : __cuda=11.1=0
                          __win=0=0
                          __archspec=1=x86_64
       base environment : E:\dev\Anaconda3  (writable)
      conda av data dir : E:\dev\Anaconda3\etc\conda
  conda av metadata url : https://repo.anaconda.com/pkgs/main
           channel URLs : https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/noarch
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/noarch
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/win-64
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/noarch
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/win-64
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/noarch
                          https://repo.anaconda.com/pkgs/main/win-64
                          https://repo.anaconda.com/pkgs/main/noarch
                          https://repo.anaconda.com/pkgs/r/win-64
                          https://repo.anaconda.com/pkgs/r/noarch
                          https://repo.anaconda.com/pkgs/msys2/win-64
                          https://repo.anaconda.com/pkgs/msys2/noarch
          package cache : E:\dev\Anaconda3\pkgs
                          C:\Users\65782\.conda\pkgs
                          C:\Users\65782\AppData\Local\conda\conda\pkgs
       envs directories : E:\dev\Anaconda3\envs
                          C:\Users\65782\.conda\envs
                          C:\Users\65782\AppData\Local\conda\conda\envs
               platform : win-64
             user-agent : conda/4.10.1 requests/2.25.1 CPython/3.8.8 Windows/10 Windows/10.0.19041
          administrator : False
             netrc file : None
           offline mode : False

2 PIP下载目录修改

https://blog.csdn.net/ZCShouCSDN/article/details/84990674

使用命令查看用户下载包路径:

python -m site

学习pytorch——了解深度学习一般框架_第1张图片

修改lib\site.py

学习pytorch——了解深度学习一般框架_第2张图片

image-20220518212159733

USER_SITE = "E:\dev\Anaconda3\Lib\site-packages"  	#USER_SITE = None

USER_BASE = "E:\dev\Anaconda3\Scripts"				#USER_BASE = None

3 Jupyter

Jupyter Notebook修改默认工作目录

输入命令查看当前jupyter_notebook_config.py文件位置

jupyter notebook --generate-config

C:\Users\65782>jupyter notebook --generate-config
Overwrite C:\Users\65782\.jupyter\jupyter_notebook_config.py with default config? [y/N]n

该地址即为jupyter_notebook_config.py所在地址。找到此文件并打开
#c.NotebookApp.notebook_dir改为c.NotebookApp.notebook_dir = 'E:\Projects\jupyter_notebook'自己的项目目录

安装插件

https://blog.csdn.net/weixin_44560088/article/details/121050748

  1. 安装插件pip install jupyter_contrib_nbextensions
  2. 安装 javascript and css files:jupyter contrib nbextension install --user
  3. 安装configure:pip install jupyter_nbextensions_configurator
  4. 卸载:
    • pip uninstall jupyter_contrib_nbextensions
    • pip uninstall jupyter_nbextensions_configurator

插件安装:https://blog.csdn.net/sinat_23971513/article/details/120102672

插件推荐

  • Hinterlandcoding 时肯定需要自动填充功能,jupyter notebook默认的状态并不理想,此插件可以增加此功能。

  • Code prettify 格式化代码,相当于pycharn中的Ctrl + Alt + L

  • Autopep8: 自动代码格式优化

  • AutoSaveTime: 控制脚本的自动保存时间

  • Hide Input All: 隐藏所有的代码单元,保持所有的输出和 markdown 单元可见

  • Spellchecker: 对 markdown 单元中的内容进行拼写检查

  • Execute Time 显示一个cell执行花费的时间

  • Scratchpad 窗口分面

  • Table of Contents (2) 添加目录

  • Variable Inspector :这是一个查看变量的插件,类似于 Matlab 和 R studio 的工作空间,可以查看变量名、类型,大小,形状和值。其中变量的 shape (形状)这个参数在进行矩阵运算时,十分实用,并且这个窗口还可以调节大小,排序等功能

Jupyter Notebook切换不同环境(不同核)

https://blog.csdn.net/zhangqiqiyihao/article/details/115251703

https://blog.csdn.net/weixin_44560088/article/details/121050748

较好:https://blog.csdn.net/weixin_39669880/article/details/106577481

  1. 查看所有环境:conda info -e

学习pytorch——了解深度学习一般框架_第3张图片

2.base环境中安装 conda install ipykernel

3.base环境中安装好jupyter notebook

4.在需要关联的环境中输入`conda环境注入:

5.查看自己的环境:``

python -m ipykernel install --user --name 你的conda环境名称 --display-name "Python [conda env:your_env]"

Python [conda env:your_env]:将是你在notebook中看到的名称。

python -m ipykernel install --user --name mypytorch --display-name mypytorch

查看所有核:jupyter kernelspec list

删除核:jupyter kernelspec remove mypytorch

卸载name核:jupyter kernelspec uninstall pytorch1.8_python3.6

  • 当创建了新的conda虚拟环境的时候,可以在新环境上面安装ipykernel:
python -m ipykernel install --user --name=pytorch_gpu(你自定义的虚拟环境的名字)

# 安装插件
conda install nb_conda
或者安装 conda install ipykernel
# 在虚拟环境中安装jupyter
pip install jupyter -i 任意源

# 然后查看是否安装成功:
jupyter kernelspec list

4 安装torch https://pytorch.org/

配置镜像源

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

    conda config --set show_channel_urls yes

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

安装CUDA

使用nvcc -V查看本机状态

https://zhuanlan.zhihu.com/p/428082594

https://blog.csdn.net/qq_45128278/article/details/114580990

查看本机显卡,并下载驱动http://www.nvidia.com/Download/index.aspx

学习pytorch——了解深度学习一般框架_第4张图片

检查驱动版本号:查看cuda适合版本:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

学习pytorch——了解深度学习一般框架_第5张图片

学习pytorch——了解深度学习一般框架_第6张图片

查看是否安装cuda:https://blog.csdn.net/qq_41897154/article/details/115273699

https://blog.csdn.net/m0_45447650/article/details/123704930

https://zhuanlan.zhihu.com/p/428082594

window 的 CUDA安装教程,分为以下步骤:

  1. 准备工作:查看本机的CUDA驱动适配版本;
    1. 检查主机GPU
    2. 检查驱动版本

学习pytorch——了解深度学习一般框架_第7张图片

CUDA: CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题

查看显卡是否支持CUDA及支持的版本https://www.jianshu.com/p/8fd2a7233d09

学习pytorch——了解深度学习一般框架_第8张图片

  1. 下载: CUDA 和 CUDNN 安装包;

  2. https://developer.nvidia.com/cuda-toolkit-archive

```txt
cuda:
https://developer.nvidia.com/cuda-11.1.1-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
cudnn:
https://developer.nvidia.com/rdp/cudnn-download
```

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3Gc4zC6o-1653983180065)(python的安装--anacoda.assets/image-20220518225827842.png)]
  1. 安装和配置:CUDA;

  2. CUDA_HOME:E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA

  3. path:%CUDA_HOME%\v11.1\lib\x64

  4. cmd:>nvcc --version

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3wTIE3ln-1653983180065)(python的安装--anacoda.assets/image-20220519002844681.png)]
  1. 安装和配置:CUDNN;

  2. jupyter 配置环境

    1. conda install ipykernel
    2. python -m ipykernel install --user --name mypytorch --display-name mypytorch

执行显卡命令:

安装tourch

学习pytorch——了解深度学习一般框架_第9张图片

-c pytorch去掉


# CUDA 10.2
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=10.2 

# CUDA 11.3
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge

# CPU Only
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cpuonly -c pytorch

torch

数据加载:Dataset

# -*- coding: utf-8 -*- 
# @Time : 2022/5/19 18:20 
# @Author : PVINCE
# @File : 1_read_data.py
#@desc:

from torch.utils.data import Dataset
from PIL import Image
import os

class MyData(Dataset):
    def __init__(self,root_dir,label_dir):
        self.root_dir=root_dir
        self.label_dir=label_dir
        self.path=os.path.join(self.root_dir,self.label_dir)
        self.img_path=os.listdir(self.path)

    def __getitem__(self, index):
        img_name=self.img_path[index]
        img_item_path=os.path.join(self.root_dir,self.label_dir,img_name)
        img=Image.open(img_item_path)
        label=self.label_dir
        return img,label  #img     label:ants|bees

    def __len__(self):
        return len(self.img_path)


root_dir= '../dataset\\train'
ants_label_dir='ants'
bees_label_dir='bees'
ants_dataSet=MyData(root_dir,ants_label_dir)
bees_dataSet=MyData(root_dir,bees_label_dir)

trian_dataset=ants_dataSet+ants_dataSet#数据集的拼接  dataset[0]是ants的数据集  dataset[1]是bees的数据集
# -*- coding: utf-8 -*- 
# @Time : 2022/5/23 21:29 
# @Author : PVINCE
# @File : 2_rename_dataset.py
#@desc:
import os
root_dir='../dataset\\train'
target_dir='ants'
label='ants'
out_dir='ants_label'
img_path=os.listdir(os.path.join(root_dir,target_dir))
for i in img_path:
    file_name=i.split('.jpg')[0]
    with open(os.path.join(root_dir,out_dir,"{}.txt".format(file_name)),'a')as f:
        f.write(label)

tensorBoard的使用

导包from torch.utils.tensorboard import SummaryWriter

安装TensorBoard:pip install tensorboard

报错:AttributeError: module ‘distutils’ has no attribute 'version’原因 setuptools版本过高

解决:pip uninstall setuptools pip install setuptools==59.5.0

学习pytorch——了解深度学习一般框架_第10张图片

使用命令tensorboard --logdir=logs查看面板

使用端口限制 tensorboard --logdir=logs --port=8080

这里会报错TensorFlow installation not found - running with reduced feature set

解决办法:

  • 使用绝对路径:tensorboard --logdir=E:\Projects\logs
  • 不要加引号
  • 切换到log文件夹的目录下,含有logs的目录下>tensorboard --logdir=logs

学习pytorch——了解深度学习一般框架_第11张图片

使用tag标签区分表格

代码:

# -*- coding: utf-8 -*- 
# @Time : 2022/5/23 21:42 
# @Author : PVINCE
# @File : 1_tensorboard使用.py 
#@desc:
from torch.utils.tensorboard import SummaryWriter
#创建文件的存放目录
writer=SummaryWriter("logs")
#tensorboard dev upload --logdir 'E:\Projects\pycharmPro\PYtorch\chapter2\logs'



for i in range(100):
    #"y=x" :tag表的名字   scalar_value:y轴的值   global_step:x轴的值
    writer.add_scalar("y=x",scalar_value=i,global_step=i)
#
writer.close()

支持的图像

学习pytorch——了解深度学习一般框架_第12张图片

image加载

# -*- coding: utf-8 -*- 
# @Time : 2022/5/23 21:42 
# @Author : PVINCE
# @File : 1_tensorboard使用.py 
#@desc:
from torch.utils.tensorboard import SummaryWriter
#创建文件的存放目录
writer=SummaryWriter("logs")
#tensorboard --logdir=logs
##########使用折线图#######
# for i in range(100):
#     #"y=x" :表的名字   scalar_value:y轴的值   global_step:x轴的值
#     writer.add_scalar("y=x",scalar_value=i,global_step=i)
#writer.close()
# #################################
########使用图片
from PIL import Image
import numpy as np
ants_path='../dataset/train/ants/0013035.jpg'
img_PIL=Image.open(ants_path)
img=np.array(img_PIL)
# img_tensor (torch.Tensor, numpy.array, or string/blobname): Image data Default is :math:`(3, H, W)`
#默认img的np中的shape是(hwc) 所以需要用dataformats指定顺序
#     #"test" :表的名字   img:y轴的值   1:x轴的值
writer.add_image('test',img,1,dataformats='HWC')

writer.close()

学习pytorch——了解深度学习一般框架_第13张图片

Transform

是一个工具箱,有很多的工具,可以使用当中的工具来进行

学习pytorch——了解深度学习一般框架_第14张图片

ToTensor

  1. transform该如何使用

    # -*- coding: utf-8 -*- 
    # @Time : 2022/5/23 22:49 
    # @Author : PVINCE
    # @File : 1_transform.py 
    #@desc:
    
    from torchvision import transforms
    from PIL import Image
    img_path='../dataset/train/ants/0013035.jpg'
    img=Image.open(img_path)
    print(img)#
    #使用transformer
    tensor_trans=transforms.ToTensor()
    tensor_img=tensor_trans(img)#tensor([[[0.3137, 0.3137, 0.3137,  ..., 0.3176, 0.3098, 0.2980],
    print(tensor_img)
    

    学习pytorch——了解深度学习一般框架_第15张图片

  2. 为什么会用到transformer

from PIL import Image
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter

img_path='../dataset/train/ants/0013035.jpg'
不使用transformer
img_PIL=Image.open(img_path)
img=np.array(img_PIL)
writer.add_image('test',img,1,dataformats='HWC')
writer.close()

使用transformer
img_PIL=Image.open(img_path)
ts=transforms.ToTensor()
ts_img=ts(img)
writer.add_image("Tensor_img",ts_img)
writer.close()

tensor包装了神经网络所要用到的参数

#@desc:使用opencv读取图片
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transforms
writer=SummaryWriter("logs","使用opencv读取图片")
img_path='../dataset/train/ants/0013035.jpg'
img=Image.open(img_path)

# 使用tensor读取图片
trans=transforms.ToTensor()
trans_img=trans(img)
writer.add_image("使用transforms读取图片",trans_img)
# 使用cv读取
import cv2
img_cv2=cv2.imread(img_path)  #ndarray  hwc
trans_img2=trans(img_cv2)
writer.add_image("使用opencv读取图片",trans_img2)
writer.close()

常见的transform

学习pytorch——了解深度学习一般框架_第16张图片

ToTensor

转换图片,将PIL Image和ndarray转换成tensor

"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.

Normalize

归一化:均值和标准差对张量图像进行归一化。这种变换不支持 PIL 图像。给定均值:(mean[1],...,mean[n]) 和 std:(std [1],..,std[n]) 用于 n 个通道,此变换将对输入的每个通道进行归一化

  channel一般是3
  ``torch.*Tensor`` i.e.,
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
    输入通道-通道均值/标准差
Args:
    mean (sequence): Sequence of means for each channel.
    std (sequence): Sequence of standard deviations for each channel.
    inplace(bool,optional): Bool to make this operation in-place.

学习pytorch——了解深度学习一般框架_第17张图片

图片转换成tensor后是一个3x3x3的矩阵 [3][h][w]=像素点的值

学习pytorch——了解深度学习一般框架_第18张图片

# -*- coding: utf-8 -*- 
# @Time : 2022/5/26 17:10 
# @Author : PVINCE
# @File : 4_Norm.py 
#@desc: tranforms中的正则化函数
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transforms
writer=SummaryWriter("logs","正则化")
img_path='../dataset/train/ants/0013035.jpg'
img=Image.open(img_path)
# 使用tensor读取图片
trans=transforms.ToTensor()
img_tensor=trans(img)
writer.add_image("正则化之前img_tensor",img_tensor)
print(img_tensor[0][0][0])#正则化之前tensor(0.3137)
tran_norm=transforms.Normalize(mean=[0.5,0.5,0.5],std=[0.5,0.5,0.5])
img_norm=tran_norm(img_tensor)
print(img_norm[0][0][0])#正则化之后tensor(-0.3725)
writer.add_image("正则化之后img_norm",img_norm)
writer.close()

学习pytorch——了解深度学习一般框架_第19张图片[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-O7c02PT9-1653983180069)(python的安装–anacoda.assets/image-20220526172240690.png)]

Resize

"""Resize the input image to the given size.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size).

img.size
Out[9]: (768, 512)
trans_resize=transforms.Resize((512,512))
print(trans_resize(img).size)
(512, 512)
# -*- coding: utf-8 -*- 
# @Time : 2022/5/26 18:49 
# @Author : PVINCE
# @File : 4_Resize.py 
#@desc:
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transforms
writer=SummaryWriter("logs","使用resize图片")
#1 读取Image.open(img_path)
img_path='../dataset/train/ants/0013035.jpg'
img=Image.open(img_path)
print(img.size)#(768, 512)
#2 使用tensor转换
trans=transforms.ToTensor()
img_tensor=trans(img)

writer.add_image("resize之前",img_tensor)
#3 使用resize函数
trans_resize=transforms.Resize((512,512))
img_resize=trans_resize(img)
print(img_resize.size)#(512, 512)
img_resize=trans(img_resize)
#4 加入日志
writer.add_image("resize之后",img_resize)
writer.close()

Compose

将多个transforms的函数出传入作为参数,进行一个组合

Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.
Example:
    >>> transforms.Compose([
    >>>     transforms.CenterCrop(10),
    >>>     transforms.PILToTensor(),
    >>>     transforms.ConvertImageDtype(torch.float),
    >>> ])
# -*- coding: utf-8 -*- 
# @Time : 2022/5/26 18:49 
# @Author : PVINCE
# @File : 4_Resize.py 
#@desc:
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transforms
writer=SummaryWriter("logs","使用resize图片")
#1 读取Image.open(img_path)
img_path='../dataset/train/ants/0013035.jpg'
img=Image.open(img_path)
print(img.size)#(768, 512)
#2 使用tensor转换
trans_ToTensor=transforms.ToTensor()
img_tensor=trans_ToTensor(img)

writer.add_image("resize之前",img_tensor)
#3 使用resize函数
trans_resize=transforms.Resize((512,512))
img_resize=trans_resize(img)
print(img_resize.size)#(512, 512)
img_resize=trans_ToTensor(img_resize)
#4 加入日志
writer.add_image("resize之后",img_resize)
# 使用compose
trans_resize2=transforms.Resize(512)
#第一个输入PIL->PIL->tensor  输入与输出要匹配,上一个函数的输出是下一个的输入
trans_compose=transforms.Compose([trans_resize2,trans_ToTensor])
img_resize2=trans_compose(img)
writer.add_image("使用compose",img_resize2)
writer.close()

RandomCrop

随机裁剪

"""Crop the given image at a random location.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
在随机位置裁剪给定的图像。如果图像是torch Tensor,它应该具有[..., H, W] 形状,其中...表示任意数量的前导维度,但如果不是- 使用常量填充,输入预计最多有 2 个前导维度
trans_crop=transforms.RandomCrop(512)
img_crop=trans_crop(img)#512,512

python中call含义

class Person:
    def __call__(self, name):
        print("__call__hello"+name)
    def hello(self,name):
        print("hello"+name)
person=Person()
person("zhangsan") ##调用了call方法
person.hello("losi")#调用了hello方法
打印结果
__call__hellozhangsan
hellolosi

Transform数据集的处理

torchvision库数据集

数据集:https://pytorch.org/vision/stable/index.html

学习pytorch——了解深度学习一般框架_第20张图片

学习pytorch——了解深度学习一般框架_第21张图片

CIFAR10数据集:使用参数

学习pytorch——了解深度学习一般框架_第22张图片

image-20220526204328024

数据集属性

image-20220526195452894

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ycpLBijI-1653983180071)(python的安装–anacoda.assets/image-20220526195428350.png)]

train_set=torchvision.datasets.CIFAR10(root="./dataset/",train=True,transform=dataset_transform,download=True)
download=true会自动解压文件夹下面的数据集包

# -*- coding: utf-8 -*- 
# @Time : 2022/5/26 19:40 
# @Author : PVINCE
# @File : 数据使用.py 
#@desc:

import torchvision

#将数据集转换成tensor,还可以进行正则化
dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])
train_set=torchvision.datasets.CIFAR10(root="./dataset/",train=True,transform=dataset_transform,download=False)
test_set=torchvision.datasets.CIFAR10(root="./dataset/",train=False,transform=dataset_transform,download=False)
img,target=train_set[0]  

dataloader使用

https://pytorch.org/docs/stable/data.html

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
           batch_sampler=None, num_workers=0, collate_fn=None,
           pin_memory=False, drop_last=False, timeout=0,
           worker_init_fn=None, *, prefetch_factor=2,
           persistent_workers=False)
  • batch_size

  • shuffle洗牌

  • num_workers 多进程

  • drop_last:100/3余1是否要

# -*- coding: utf-8 -*- 
# @Time : 2022/5/26 21:36 
# @Author : PVINCE
# @File : dataloader使用.py 
#@desc: dataloader使用

import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=torchvision.transforms.ToTensor())

test_loader=DataLoader(test_data,batch_size=51,shuffle=True,num_workers=0,drop_last=False)
# batch_size返回一组包含4个的数据;shuffle洗牌;num_workers多进程;drop_last是否放弃不足以4个的返回
img,target=test_data[0]
target_names=test_data.classes
print(img.shape)
print(target)
print(target_names)
writer=SummaryWriter("logs")
step=0
for data in test_loader:
    imgs,targets=data
    print(imgs.shape)#    torch.Size([4, 3, 32, 32])
    print(targets)    #tensor([2, 1, 3, 6])
    writer.add_images("test_data",imgs,step)
    step+=1

writer.close()

学习pytorch——了解深度学习一般框架_第23张图片

洗牌对比

shuffle=true

学习pytorch——了解深度学习一般框架_第24张图片学习pytorch——了解深度学习一般框架_第25张图片

shuffle=False

学习pytorch——了解深度学习一般框架_第26张图片[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-V58ZExgP-1653983180072)(python的安装–anacoda.assets/image-20220526220820449.png)]

神经网络的搭建nn(Neural network)

https://pytorch.org/docs/stable/nn.html

module

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

前向传播

学习pytorch——了解深度学习一般框架_第27张图片

学习pytorch——了解深度学习一般框架_第28张图片

# -*- coding: utf-8 -*- 
# @Time : 2022/5/26 22:15 
# @Author : PVINCE
# @File : nn_module.py 
#@desc:神经网络模型
import torch
from torch import nn

class myModule(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self,input):
        output=input+1
        return output

# 创建神经网络
pp=myModule()
x=torch.tensor(1.0)
output=pp(x)
print(output)

卷积

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d、

https://pytorch.org/docs/stable/generated/torch.nn.functional.conv2d.html#torch.nn.functional.conv2d

卷积HW计算:https://zhuanlan.zhihu.com/p/163017446

参数动图展示: https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

学习pytorch——了解深度学习一般框架_第29张图片

  • 参数动图展示: https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

学习pytorch——了解深度学习一般框架_第30张图片

  • in_channels (int) – Number of channels in the input image

  • out_channels (int) – Number of channels produced by the convolution

    • 有时候一个通道,2个输出通道
    • 学习pytorch——了解深度学习一般框架_第31张图片
  • kernel_size (int or tuple) – Size of the convolving kernel 卷积核大小,只有一个矩阵的时候会生成另外的https://zhuanlan.zhihu.com/p/163017446

    • N是特征图的宽度,M是输出的宽度,卷积核的滑动次数是 M − 1 M-1 M1 ,padding之后的矩阵宽度等于 N + 2 ∗ p a d d i n g N+2*padding N+2padding
    • 学习pytorch——了解深度学习一般框架_第32张图片学习pytorch——了解深度学习一般框架_第33张图片
  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int, tuple or str, optional) – Padding added to all four sides of the input. Default: 0

  • padding_mode (string*,* optional) – 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1 空洞卷积

    学习pytorch——了解深度学习一般框架_第34张图片

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True 添加偏置

卷积过程

学习pytorch——了解深度学习一般框架_第35张图片

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2AaIKBOJ-1653983180075)(python的安装–anacoda.assets/image-20220527160021889.png)]学习pytorch——了解深度学习一般框架_第36张图片

# -*- coding: utf-8 -*- 
# @Time : 2022/5/27 15:50 
# @Author : PVINCE
# @File : nn_conv.py 
#@desc:

import torch
import torch.nn.functional as F
input=torch.tensor([[1,2,0,3,1],
                   [0,1,2,3,1],
                   [1,2,1,0,0],
                   [5,2,3,1,1],
                   [2,1,0,1,1]]
                   )
kernel=torch.tensor([[1,2,1],
                    [0,1,0],
                    [2,1,0]])
print(input.shape, kernel.shape)#torch.Size([5, 5]) torch.Size([3, 3])

input=torch.reshape(input,(1,1,5,5))#bathsize=1,chanel=1,h=5,w=5
kernel=torch.reshape(kernel,(1,1,3,3))#bathsize=1,chanel=1,h=3,w=3

output=F.conv2d(input=input,weight=kernel,stride=1)
print(output)

tensor([[[[10, 12, 12],
          [18, 16, 16],
          [13,  9,  3]]]])

output=F.conv2d(input=input,weight=kernel,stride=2)
tensor([[[[10, 12],
          [13,  3]]]])

Padding

给矩阵数组添加新的行列,进行扩展一个像素,默认为0

output3=F.conv2d(input=input,weight=kernel,stride=1,padding=1)
print(output3)
tensor([[[[ 1,  3,  4, 10,  8],
          [ 5, 10, 12, 12,  6],
          [ 7, 18, 16, 16,  8],
          [11, 13,  9,  3,  4],
          [14, 13,  9,  7,  4]]]])

小案例

# -*- coding: utf-8 -*- 
# @Time : 2022/5/27 16:22 
# @Author : PVINCE
# @File : nn_conv2d.py 
#@desc:
import torch
import torchvision
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch import nn
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('./dataset',train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataloader=DataLoader(dataset,batch_size=64)

class PP(nn.Module):
    def __init__(self):
        super(PP,self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        x=self.conv1(x)
        return x

pp=PP()
print(pp)#  (conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1)
writer=SummaryWriter("logs")

step=0
for data in dataloader:

    imgs,targets=data
    output=pp(imgs)
    print(imgs.shape)#torch.Size([64, 3, 32, 32])
    print(output.shape)#torch.Size([64, 6, 30, 30])

    output=torch.reshape(output,[-1,3,30,30])
    writer.add_images("input imgs",imgs,global_step=step)
    writer.add_images("con2d imgs",output,global_step=step)
    step+=1

writer.close()

池化==降采样

减少数据量,同时选取有用的值。

https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d

Parameters

  • kernel_size – the size of the window to take a max over
  • stride – the stride of the window. Default value is kernel_size
  • padding – implicit zero padding to be added on both sides
  • dilation – a parameter that controls the stride of elements in the window
  • return_indices – if True, will return the max indices along with the outputs. Useful for torch.nn.MaxUnpool2d later
  • ceil_mode – when True, will use ceil instead of floor to compute the output shape

最大池化:找到池化核中的最大的值。

默认设置kernel_size

学习pytorch——了解深度学习一般框架_第37张图片

# -*- coding: utf-8 -*- 
# @Time : 2022/5/27 17:02 
# @Author : PVINCE
# @File : nn_maxPool.py 
#@desc:

import torch
from torch.nn import MaxPool2d
from torch import nn

input=torch.tensor([[1,2,0,3,1],
                   [0,1,2,3,1],
                   [1,2,1,0,0],
                   [5,2,3,1,1],
                   [2,1,0,1,1]],dtype=torch.float32
                   )

input=torch.reshape(input,(-1,1,5,5))

class Mymodule(nn.Module):
    def __init__(self):
        super(Mymodule, self).__init__()
        self.maxPool=MaxPool2d(kernel_size=3,ceil_mode=True)

    def forward(self,input):
        output=self.maxPool(input)
        return output

model=Mymodule()
output=model(input)
print(output)#tensor([[[[2., 3.],[5., 1.]]]])

代码2

# -*- coding: utf-8 -*- 
# @Time : 2022/5/27 17:02 
# @Author : PVINCE
# @File : nn_maxPool.py 
#@desc:

import torch
import torchvision
from torch.nn import MaxPool2d
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('./dataset',train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataloader=DataLoader(dataset,batch_size=64)

input=torch.reshape(input,(-1,1,5,5))

class Mymodule(nn.Module):
    def __init__(self):
        super(Mymodule, self).__init__()
        self.maxPool=MaxPool2d(kernel_size=3,ceil_mode=True)

    def forward(self,input):
        output=self.maxPool(input)
        return output
writer=SummaryWriter("logs_maxpool")
model=Mymodule()
step=0
for data in dataloader:
    imgs,target=data
    output=model(imgs)
    writer.add_images("maxpool input imgs",imgs,global_step=step)
    writer.add_images("maxpool output imgs",output,global_step=step)

writer.close()

学习pytorch——了解深度学习一般框架_第38张图片学习pytorch——了解深度学习一般框架_第39张图片

非线性激活

函数:sigmod relu 正切

Relu:https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU

作用:增加泛化能力

ReLU(inplace=False) false会保留原来的值

学习pytorch——了解深度学习一般框架_第40张图片

# -*- coding: utf-8 -*- 
# @Time : 2022/5/27 17:23 
# @Author : PVINCE
# @File : nn_Relu.py 
#@desc:
import torch
from torch import nn
from torch.nn import ReLU

input=torch.tensor([[1,-0.5],
                    [-1,3]])

input=torch.reshape(input,(-1,1,2,2))
print(input.shape) #torch.Size([1, 1, 2, 2])

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.relu1=ReLU(inplace=False)
    def forward(self,x):
        x=self.relu1(x)
        return x

mymodel=MyModel()
output=mymodel(input)
print(output) #[[[[1., 0.],[0., 3.]]]])
# -*- coding: utf-8 -*- 
# @Time : 2022/5/27 17:23 
# @Author : PVINCE
# @File : nn_Relu.py 
#@desc:
from torch import nn
from torch.nn import ReLU
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.relu1=ReLU(inplace=False)
    def forward(self,x):
        x=self.relu1(x)
        return x



dataset=torchvision.datasets.CIFAR10('./dataset',train=False,download=True,transform=torchvision.transforms.ToTensor())
dataloader=DataLoader(dataset,batch_size=64)

writer=SummaryWriter("logs_relu")

mymodel=MyModel()
step=0
for data in dataloader:
    imgs,target=data
    output=mymodel(imgs)
    writer.add_images("relu input",imgs,global_step=step)
    writer.add_images("relu output",output,global_step=step)
    step = step+1

writer.close()

学习pytorch——了解深度学习一般框架_第41张图片

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BCiMlURk-1653983180077)(python的安装–anacoda.assets/image-20220527175108272.png)]

正则化-加速收敛

https://pytorch.org/docs/stable/nn.html#normalization-layers

学习pytorch——了解深度学习一般框架_第42张图片

# With Learnable Parameters
m = nn.BatchNorm2d(100)
# Without Learnable Parameters
m = nn.BatchNorm2d(100, affine=False)
input = torch.randn(20, 100, 35, 45)
output = m(input)

ReCurrent layers

https://pytorch.org/docs/stable/nn.html#recurrent-layers

一些文字识别会用到

nn.RNNBase
nn.RNN Applies a multi-layer Elman RNN with \tanhtanh or \text{ReLU}ReLU non-linearity to an input sequence.
nn.LSTM Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.
nn.GRU Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.
nn.RNNCell An Elman RNN cell with tanh or ReLU non-linearity.
nn.LSTMCell A long short-term memory (LSTM) cell.
nn.GRUCell A gated recurrent unit (GRU) cell

Linear Layers

nn.Identity A placeholder identity operator that is argument-insensitive.
nn.Linear Applies a linear transformation to the incoming data: y = xA^T + by=xAT+b
nn.Bilinear Applies a bilinear transformation to the incoming data: y = x_1^T A x_2 + by=x1TAx2+b
nn.LazyLinear A torch.nn.Linear module where in_features is inferred.

Dropout Layers

随机变成零,防止过拟合

nn.Dropout During training, randomly zeroes some of the elements of the input tensor with probability p using samples from a Bernoulli distribution.
nn.Dropout2d Randomly zero out entire channels (a channel is a 2D feature map, e.g., the jj-th channel of the ii-th sample in the batched input is a 2D tensor \text{input}[i, j]input[i,j]).
nn.Dropout3d Randomly zero out entire channels (a channel is a 3D feature map, e.g., the jj-th channel of the ii-th sample in the batched input is a 3D tensor \text{input}[i, j]input[i,j]).
nn.AlphaDropout Applies Alpha Dropout over the input.
nn.FeatureAlphaDropout Randomly masks out entire channels (a channel is a feature map, e.g.

Distance Functions

误差衡量

线性层

Linear Layers

nn.Identity A placeholder identity operator that is argument-insensitive.
nn.Linear Applies a linear transformation to the incoming data: y = xA^T + by=xAT+b
nn.Bilinear Applies a bilinear transformation to the incoming data: y = x_1^T A x_2 + by=x1TAx2+b
nn.LazyLinear A torch.nn.Linear module where in_features is inferred.
# -*- coding: utf-8 -*- 
# @Time : 2022/5/27 19:18 
# @Author : PVINCE
# @File : nn_linear.py 
#@desc:线性层
import torch
import torchvision
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch import nn
dataset=torchvision.datasets.CIFAR10('./dataset',train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataloader=DataLoader(dataset,batch_size=64)

class Mymdl(nn.Module):
    def __init__(self):
        super(Mymdl,self).__init__()
        self.linear1=Linear(196608,10)#输入特征值数量,输出特征值数量
    def forward(self,input):
        output=self.linear1(input)
        return output
Pmodel=Mymdl()


for data in dataloader:
    imgs,target=data
    print(imgs.shape)#torch.Size([64, 3, 32, 32])
    output=torch.reshape(imgs,(1,1,1,-1))
    print(output.shape)#torch.Size([1, 1, 1, 196608])

    output2=torch.flatten(imgs)#摊平
    print(output2.shape)#torch.Size([196608])
    output3=Pmodel(output2)
    print(output3.shape)#torch.Size([10])

Sequential模型案例

代码写起来简洁易懂

CIFAR10一个简单网络结构模型

学习pytorch——了解深度学习一般框架_第43张图片

卷积HW计算:https://zhuanlan.zhihu.com/p/163017446

学习pytorch——了解深度学习一般框架_第44张图片

模型网络层参数计算

  1. c o n v 2 d : 3 @ 32 × 32 conv2d :3@32\times32 conv2d:3@32×32的数据经过卷积后为 32 @ 32 × 32 32@32\times32 32@32×32

    • 32 = 32 + 2 ∗ p a d d i n g − 5 s t r i d e = 1 + 1 32=\frac{32+2*padding-5}{stride=1}+1 32=stride=132+2padding5+1
    • padding=2,stride=1,k=5
  2. M a x P o o l i n g : k = 2 MaxPooling:k=2 MaxPooling:k=2

    • input:32*32*32
    • ouput:32*16*16
  3. c o n v 2 d : 32 @ 16 × 16 conv2d :32@16\times16 conv2d:32@16×16的数据经过卷积后为 32 @ 16 × 16 32@16\times16 32@16×16

    • 16 = 16 + 2 ∗ p a d d i n g − 5 s t r i d e = 1 + 1 16=\frac{16+2*padding-5}{stride=1}+1 16=stride=116+2padding5+1
    • padding=2,stride=1,k=5
  4. M a x P o o l i n g : k = 2 MaxPooling:k=2 MaxPooling:k=2

    • input:32*16*16
    • ouput:32*8*8
  5. c o n v 2 d : 32 @ 8 × 8 conv2d :32@8\times 8 conv2d:32@8×8的数据经过卷积后为 64 @ 8 × 8 64@8\times 8 64@8×8

    • 8 = 8 + 2 ∗ p a d d i n g − 5 s t r i d e = 1 + 1 8=\frac{8+2*padding-5}{stride=1}+1 8=stride=18+2padding5+1
    • padding=2,stride=1,k=5
  6. M a x P o o l i n g : k = 2 MaxPooling:k=2 MaxPooling:k=2

    • input:64*8*8
    • ouput:64*4*4
  7. F l a t t e n Flatten Flatten

    • 将64个通道的进行展开 64 × 4 × 4 = 1024 64\times 4 \times 4=1024 64×4×4=1024

    •   print(imgs.shape)#torch.Size([64, 3, 32, 32])
        output=torch.reshape(imgs,(1,1,1,-1))
        print(output.shape)#torch.Size([1, 1, 1, 196608])  其实就是 64个图片*3通道*32高*32宽的结果
        
        output2=torch.flatten(imgs)#摊平
        print(output2.shape)#torch.Size([196608])
      
  8. 全连接层

    • self.linear1=Linear(196608,10)#196608输入特征值数量,10输出特征值数量

模型编写

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule,self).__init__()
        self.conv2d1=Conv2d(in_channels=3,out_channels=32,kernel_size=5,padding=2,stride=1)
        self.maxPool1 = MaxPool2d(2)  # 池化的stride默认为kernel

        self.conv2d2=Conv2d(in_channels=32,out_channels=32,kernel_size=5,padding=2,stride=1)
        self.maxPool2 = MaxPool2d(2)

        self.conv2d3=Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2,stride=1)
        self.maxPool3=MaxPool2d(2)

        self.flatten=Flatten()
        self.linear1=Linear(1024,64)
        self.linear2=Linear(64,10)

    def forward(self,input):
        input=self.conv2d1(input)
        input = self.maxPool1(input)

        input=self.conv2d2(input)
        input = self.maxPool2(input)

        input=self.conv2d3(input)
        input=self.maxPool3(input)

        #展开
        input= self.flatten(input)

        #全连接
        input=self.linear1(input)
        output=self.linear2(input)
        return output

mymodel=MyModule()
input=torch.ones((64,3,32,32))
output=mymodel(input)#torch.Size([64, 10])

使用sequential改写

# -*- coding: utf-8 -*- 
# @Time : 2022/5/27 19:36 
# @Author : PVINCE
# @File : NN_seq.py 
# @desc:cifar10
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Flatten
import torch
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter


class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),  # 池化的stride默认为kernel
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10),
        )

    def forward(self, input):
        output=self.model1(input)
        return output


mymodel = MyModule()

input = torch.ones((64, 3, 32, 32))
output = mymodel(input)
print(output.shape)

writer=SummaryWriter("logs_seq")
writer.add_graph(mymodel,input)
writer.close()

使用日志观察

学习pytorch——了解深度学习一般框架_第45张图片

学习pytorch——了解深度学习一般框架_第46张图片

学习pytorch——了解深度学习一般框架_第47张图片

使用数据

损失函数

学习pytorch——了解深度学习一般框架_第48张图片

https://pytorch.org/docs/stable/nn.html#loss-functions

要根据实际的需求去选择损失函数,注意输出和输入

nn.L1Loss Creates a criterion that measures the mean absolute error (MAE) between each element in the input xx and target yy.
nn.MSELoss Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input xx and target yy.
nn.CrossEntropyLoss This criterion computes the cross entropy loss between input and target.
nn.CTCLoss The Connectionist Temporal Classification loss.
nn.NLLLoss The negative log likelihood loss.
nn.PoissonNLLLoss Negative log likelihood loss with Poisson distribution of target.
nn.GaussianNLLLoss Gaussian negative log likelihood loss.
nn.KLDivLoss The Kullback-Leibler divergence loss.
nn.BCELoss Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities:
nn.BCEWithLogitsLoss This loss combines a Sigmoid layer and the BCELoss in one single class.
nn.MarginRankingLoss Creates a criterion that measures the loss given inputs x1x1, x2x2, two 1D mini-batch or 0D Tensors, and a label 1D mini-batch or 0D Tensor yy (containing 1 or -1).
nn.HingeEmbeddingLoss Measures the loss given an input tensor xx and a labels tensor yy (containing 1 or -1).
nn.MultiLabelMarginLoss Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input xx (a 2D mini-batch Tensor) and output yy (which is a 2D Tensor of target class indices).
nn.HuberLoss Creates a criterion that uses a squared term if the absolute element-wise error falls below delta and a delta-scaled L1 term otherwise.
nn.SmoothL1Loss Creates a criterion that uses a squared term if the absolute element-wise error falls below beta and an L1 term otherwise.
nn.SoftMarginLoss Creates a criterion that optimizes a two-class classification logistic loss between input tensor xx and target tensor yy (containing 1 or -1).
nn.MultiLabelSoftMarginLoss Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between input xx and target yy of size (N, C)(N,C).
nn.CosineEmbeddingLoss Creates a criterion that measures the loss given input tensors x_1x1, x_2x2 and a Tensor label yy with values 1 or -1.
nn.MultiMarginLoss Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input xx (a 2D mini-batch Tensor) and output yy (which is a 1D tensor of target class indices, 0 \leq y \leq \text{x.size}(1)-10≤y≤x.size(1)−1):
nn.TripletMarginLoss Creates a criterion that measures the triplet loss given an input tensors x1x1, x2x2, x3x3 and a margin with a value greater than 00.
nn.TripletMarginWithDistanceLoss Creates a criterion that measures the triplet loss given input tensors aa, pp, and nn (representing anchor, positive, and negative examples, respectively), and a nonnegative, real-valued function (“distance function”) used to compute the relationship between the anchor and positive example (“positive distance”) and the anchor and negative example (“negative distance”).

L1Loss

https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html#torch.nn.L1Loss

学习pytorch——了解深度学习一般框架_第49张图片

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 16:51 
# @Author : PVINCE
# @File : nn_loss.py 
#@desc:

import torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))
targets=torch.reshape(targets,(1,1,1,3))

loss=L1Loss(reduction='sum')
result=loss(inputs,targets)

print(result)#tensor(2.)

MSELoss 平方差

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss

CrossEntropyLoss 交叉熵

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss

案例

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 16:51 
# @Author : PVINCE
# @File : nn_loss.py 
#@desc:

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Flatten
from torch.nn import L1Loss
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter


class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),  # 池化的stride默认为kernel
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10),
        )

    def forward(self, input):
        output=self.model1(input)
        return output



# 开始训练
# 数据加载
dataset = torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
                                       transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=1)


loss=nn.CrossEntropyLoss()
mymodel = MyModule()

for data in dataloader:
    

    imgs,targets=data
    outputs=mymodel(imgs)
    result_loss=loss(outputs,targets)
    result_loss.backward()  #进行反向传播 获取当前梯度,拿到梯度后想办法降低梯度


    print(result_loss)#tensor(2.2508, grad_fn=)
    print("ok")


# writer=SummaryWriter("logs_seq")
# writer.add_graph(mymodel,input)
# writer.close()

优化器

https://pytorch.org/docs/stable/optim.html

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 16:51 
# @Author : PVINCE
# @File : nn_loss.py 
#@desc:使用交叉熵作为loss使用SGD作为优化器

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter


class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),  # 池化的stride默认为kernel
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10),
        )

    def forward(self, input):
        output=self.model1(input)
        return output

# 开始训练
# 数据加载
dataset = torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
                                       transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=1)

myModel = MyModule()
loss=nn.CrossEntropyLoss()
lr=1e-2 #学习率
optim=torch.optim.SGD(myModel.parameters(),lr=lr)

for epoch in range(20):#使用20轮循环
    running_loss=0.0  #每一轮的loss
    for data in dataloader:
        imgs,targets=data
        outputs=myModel(imgs)
        result_loss=loss(outputs,targets)#计算loss

        optim.zero_grad()#引入  使用优化器,对上一次的梯度清零
        result_loss.backward()  # 进行反向传播 获取当前梯度,拿到梯度后想办法降低梯度
        optim.step()#调整参数
        running_loss=running_loss+result_loss#求出总的loss
    print(running_loss)
# writer=SummaryWriter("logs_seq")
# writer.add_graph(mymodel,input)
# writer.close()

学习pytorch——了解深度学习一般框架_第50张图片

一般的模型

https://pytorch.org/audio/0.8.0/models.html

VGG16

使用vgg网络作为前置的网络提取关键的信息,再去训练

https://pytorch.org/vision/0.9/models.html#id2

VGG16的模型架构如下:输出是1000的分类

学习pytorch——了解深度学习一般框架_第51张图片

学习pytorch——了解深度学习一般框架_第52张图片

使用数据集imgnet

https://pytorch.org/vision/0.9/datasets.html#imagenet

学习pytorch——了解深度学习一般框架_第53张图片

pip install scipy

在CIf10上使用VGG(改写)

输出1000改写为10

学习pytorch——了解深度学习一般框架_第54张图片

学习pytorch——了解深度学习一般框架_第55张图片

学习pytorch——了解深度学习一般框架_第56张图片

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 17:52 
# @Author : PVINCE
# @File : model_pretrained.py 
#@desc:加载预训练模型

import torch
import torchvision
from torch import nn

from torch.utils.data import DataLoader
import os
os.environ['TORCH_HOME']='E:/dev/torch_model'  #设置vgg模型下载路径

vgg16_true=torchvision.models.vgg16(pretrained=True)
vgg16_false=torchvision.models.vgg16(pretrained=False)
vgg16_true.classifier.add_module("add_linear",nn.Linear(1000,10))
vgg16_false.classifier[6]=nn.Linear(4096,10)

print(vgg16_true)
print(vgg16_false)

模型的保存&加载

方式1

torch.save 保存模型的结构和模型参数,比较大

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 18:26 
# @Author : PVINCE
# @File : nn_load.py 
#@desc:模型的加载
import torch
model=torch.load("vgg16_false.pth")
print(model)

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 18:24 
# @Author : PVINCE
# @File : nn_save.py 
#@desc:模型的保存

import torchvision
from torch import nn
import torch
import os
os.environ['TORCH_HOME']='E:/dev/torch_model'

vgg16_false=torchvision.models.vgg16(pretrained=False)
vgg16_false.classifier[6]=nn.Linear(4096,10)
torch.save(vgg16_false,"vgg16_false.pth")

image-20220528182748905

方式2

json:只是保存参数,官方推荐,占用内存小

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 18:29 
# @Author : PVINCE
# @File : nn_save2.py 
#@desc:保存模式2
import torch
import torchvision
#模型的保存
vgg16_false=torchvision.models.vgg16(pretrained=False)
torch.save(vgg16_false.state_dict(),"vgg16_false2.pth")
#模型的加载
model_dict=torch.load("vgg16_false2.pth")#打开的是字典的模式,故要新建网络模型结构
vgg16_false2=torchvision.models.vgg16(pretrained=False)
vgg16_false2.load_state_dict(model_dict)

模型训练方法

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 18:39 
# @Author : PVINCE
# @File : 2_train.py 
#@desc:
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

#模型
class MyModule1(nn.Module):
    def __init__(self):
        super(MyModule1, self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),  # 池化的stride默认为kernel
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10),
        )

    def forward(self, input):
        output=self.model1(input)
        return output

#数据集加载
train_data= torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
                                       transform=torchvision.transforms.ToTensor())
test_data= torchvision.datasets.CIFAR10("./dataset", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

#数据集长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集长度{},测试数据集长度{}.".format(test_data_size,test_data_size))

#使用dataloader
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
#创建网络模型
mymodel = MyModule1()

#定义损失函数
loss_fn=nn.CrossEntropyLoss()

#定义优化器
learning_rate=1e-2
optimizer=torch.optim.SGD(mymodel.parameters(),lr=learning_rate)

#设置训练参数
total_train_step=0      #训练的次数
total_test_step=0      #测试的次数
epoch=10                 #训练的轮数

for i in range(epoch):
    print("----------第{}轮训练开始------------".format(i+1))
    for data in train_dataloader:
        imgs,targets=data
        outputs=mymodel(imgs)
        loss=loss_fn(outputs,targets)
        # 优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step=total_train_step+1
        print("训练次数:{},loss:{}".format(total_train_step,loss))
        
打印内容

训练数据集长度10000,测试数据集长度10000.
----------1轮训练开始------------
训练次数:1,loss:2.2796311378479004
训练次数:2,loss:2.297395706176758

模型达到需求?

使用测试数据集评估模型

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 18:39 
# @Author : PVINCE
# @File : 2_train.py 
#@desc:
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

#模型
from torch.utils.tensorboard import SummaryWriter


class MyModule1(nn.Module):
    def __init__(self):
        super(MyModule1, self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),  # 池化的stride默认为kernel
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10),
        )

    def forward(self, input):
        output=self.model1(input)
        return output

#数据集加载
train_data= torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
                                       transform=torchvision.transforms.ToTensor())
test_data= torchvision.datasets.CIFAR10("./dataset", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

#数据集长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集长度{},测试数据集长度{}.".format(test_data_size,test_data_size))

#使用dataloader
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
#创建网络模型
mymodel = MyModule1()

#定义损失函数
loss_fn=nn.CrossEntropyLoss()

#定义优化器
learning_rate=1e-2
optimizer=torch.optim.SGD(mymodel.parameters(),lr=learning_rate)

#设置日志
writer=SummaryWriter("logs")

#设置训练参数
total_train_step=0      #训练的次数
total_test_step=0      #测试的次数
epoch=10                 #训练的轮数

for i in range(epoch):
    print("----------第{}轮训练开始------------".format(i+1))
    for data in train_dataloader:
        imgs,targets=data
        outputs=mymodel(imgs)
        loss=loss_fn(outputs,targets)
        # 优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step=total_train_step+1
        if total_train_step%100==0:
            print("训练次数:{},loss:{}".format(total_train_step,loss))
            #添加到日志
            writer.add_scalar("Train_loss",loss,total_train_step)

    # 测试开始
    total_test_loss=0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = mymodel(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss=total_test_loss+loss
    print("整体测试集的loss:{}".format(total_test_loss))
    writer.add_scalar("Test_loss", total_test_loss,total_test_step)
    total_train_step=total_test_step+1

    torch.save(mymodel,"mymodel_{}.pth".format(i))
    print("模型已保存")

writer.close()

正确数量

学习pytorch——了解深度学习一般框架_第57张图片

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 19:24 
# @Author : PVINCE
# @File : 统计.py 
#@desc:

import torch

outputs=torch.tensor([[0.1,0.2],
                      [0.05,0.4]])

print(outputs.argmax(0))#tensor([0, 1])  代表的意思是 竖着看 [0.1和0.05]大的idx是0 [0.2,0.4] 大的是0.4的idx=1
print(outputs.argmax(1))#tensor([1, 1])代表的意思是 横着看 [0.1和0.2]大的idx是1 [0.05,0.4] 大的是0.4的idx=1
preds=outputs.argmax(1)

targets=torch.tensor([0,1])#目标组
print((preds==targets).sum())#tensor(1) 代表 tensor([1, 1])和tensor([0,1]比较相等的只有一个,表示预测正确的是1个

加入统计

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 18:39 
# @Author : PVINCE
# @File : 2_train.py 
#@desc:
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

#模型
from torch.utils.tensorboard import SummaryWriter


class MyModule1(nn.Module):
    def __init__(self):
        super(MyModule1, self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),  # 池化的stride默认为kernel
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10),
        )

    def forward(self, input):
        output=self.model1(input)
        return output

#数据集加载
train_data= torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
                                       transform=torchvision.transforms.ToTensor())
test_data= torchvision.datasets.CIFAR10("./dataset", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

#数据集长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集长度{},测试数据集长度{}.".format(test_data_size,test_data_size))

#使用dataloader
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
#创建网络模型
mymodel = MyModule1()

#定义损失函数
loss_fn=nn.CrossEntropyLoss()

#定义优化器
learning_rate=1e-2
optimizer=torch.optim.SGD(mymodel.parameters(),lr=learning_rate)

#设置日志
writer=SummaryWriter("logs")

#设置训练参数
total_train_step=0      #训练的次数
total_test_step=0      #测试的次数
epoch=10                 #训练的轮数

for i in range(epoch):
    print("----------第{}轮训练开始------------".format(i+1))
    for data in train_dataloader:
        imgs,targets=data
        outputs=mymodel(imgs)
        loss=loss_fn(outputs,targets)
        # 优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step=total_train_step+1
        if total_train_step%100==0:
            print("训练次数:{},loss:{}".format(total_train_step,loss))
            #添加到日志
            writer.add_scalar("Train_loss",loss,total_train_step)

    # 测试开始
    total_test_loss=0
    total_accuracy=0

    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = mymodel(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss=total_test_loss+loss
            accuracy=(outputs.argmax(1)==targets).sum()
            total_accuracy=total_accuracy+accuracy

    print("整体测试集的loss:{}".format(total_test_loss))
    print("整体测试集正确率acc:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("Test_loss", total_test_loss,total_test_step)
    total_train_step=total_test_step+1

    torch.save(mymodel,"mymodel_{}.pth".format(i))
    print("模型已保存")

writer.close()

Train()

当模型有dropout层和个别层的时候,要调用

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

学习pytorch——了解深度学习一般框架_第58张图片

eval()

学习pytorch——了解深度学习一般框架_第59张图片

# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 18:39 
# @Author : PVINCE
# @File : 2_train.py 
#@desc:
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

#模型
from torch.utils.tensorboard import SummaryWriter


class MyModule1(nn.Module):
    def __init__(self):
        super(MyModule1, self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),  # 池化的stride默认为kernel
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10),
        )

    def forward(self, input):
        output=self.model1(input)
        return output

#数据集加载
train_data= torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
                                       transform=torchvision.transforms.ToTensor())
test_data= torchvision.datasets.CIFAR10("./dataset", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

#数据集长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集长度{},测试数据集长度{}.".format(test_data_size,test_data_size))

#使用dataloader
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
#创建网络模型
mymodel = MyModule1()

#定义损失函数
loss_fn=nn.CrossEntropyLoss()

#定义优化器
learning_rate=1e-2
optimizer=torch.optim.SGD(mymodel.parameters(),lr=learning_rate)

#设置日志
writer=SummaryWriter("logs")

#设置训练参数
total_train_step=0      #训练的次数
total_test_step=0      #测试的次数
epoch=10                 #训练的轮数


for i in range(epoch):
    print("----------第{}轮训练开始------------".format(i+1))
    mymodel.train()
    for data in train_dataloader:
        imgs,targets=data
        outputs=mymodel(imgs)
        loss=loss_fn(outputs,targets)
        # 优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step=total_train_step+1
        if total_train_step%100==0:
            print("训练次数:{},loss:{}".format(total_train_step,loss))
            #添加到日志
            writer.add_scalar("Train_loss",loss,total_train_step)

    # 测试开始
    mymodel.eval()
    total_test_loss=0
    total_accuracy=0

    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = mymodel(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss=total_test_loss+loss
            accuracy=(outputs.argmax(1)==targets).sum()
            total_accuracy=total_accuracy+accuracy

    print("整体测试集的loss:{}".format(total_test_loss))
    print("整体测试集正确率acc:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("Test_loss", total_test_loss,total_test_step)
    total_train_step=total_test_step+1

    torch.save(mymodel,"mymodel_{}.pth".format(i))
    print("模型已保存")

writer.close()

GPU1

  • 模型
  • lossFn
  • 数据
  • .cuda()
# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 19:42 
# @Author : PVINCE
# @File : 使用GPU训练.py 
#@desc:
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
import time
#模型
from torch.utils.tensorboard import SummaryWriter

cuda_isAvailable=torch.cuda.is_available()

class MyModule1(nn.Module):
    def __init__(self):
        super(MyModule1, self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),  # 池化的stride默认为kernel
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10),
        )

    def forward(self, input):
        output=self.model1(input)
        return output

#数据集加载
train_data= torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
                                       transform=torchvision.transforms.ToTensor())
test_data= torchvision.datasets.CIFAR10("./dataset", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

#数据集长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集长度{},测试数据集长度{}.".format(test_data_size,test_data_size))

#使用dataloader
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
#创建网络模型
mymodel = MyModule1()
#定义损失函数
loss_fn=nn.CrossEntropyLoss()

#转移到cuda
if cuda_isAvailable:
    mymodel=mymodel.cuda()
    loss_fn=loss_fn.cuda()

#定义优化器
learning_rate=1e-2
optimizer=torch.optim.SGD(mymodel.parameters(),lr=learning_rate)



#设置训练参数
total_train_step=0      #训练的次数
total_test_step=0      #测试的次数
epoch=10                 #训练的轮数

#设置日志
writer=SummaryWriter("logs")

start_time=time.time()

for i in range(epoch):
    print("----------第{}轮训练开始------------".format(i+1))
    mymodel.train()
    for data in train_dataloader:
        imgs,targets=data
        # 转移到GPU
        if cuda_isAvailable:
            imgs=imgs.cuda()
            targets=targets.cuda()

        outputs=mymodel(imgs)
        loss=loss_fn(outputs,targets)
        # 优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step=total_train_step+1
        if total_train_step%100==0:
            end_time = time.time()
            print("时间花费:{}".format(end_time-start_time))
            print("训练次数:{},loss:{}".format(total_train_step,loss))
            #添加到日志
            writer.add_scalar("Train_loss",loss,total_train_step)

    # 测试开始
    mymodel.eval()
    total_test_loss=0
    total_accuracy=0

    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = mymodel(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss=total_test_loss+loss
            accuracy=(outputs.argmax(1)==targets).sum()
            total_accuracy=total_accuracy+accuracy

    print("整体测试集的loss:{}".format(total_test_loss))
    print("整体测试集正确率acc:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("Test_loss", total_test_loss,total_test_step)
    total_train_step=total_test_step+1

    torch.save(mymodel,"mymodel_{}.pth".format(i))
    print("模型已保存")

writer.close()

GPU2

使用谷歌的GPu

https://colab.research.google.com/

  • .to(device)
  • Device = torch.device("cpu”)
  • lorch.device("cuda”)
  • Torch.device( "cuda:0”)
  • Torch.device( "cuda:1”)
# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 19:42 
# @Author : PVINCE
# @File : 使用GPU训练.py 
#@desc:
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
import time
#模型
from torch.utils.tensorboard import SummaryWriter

cuda_isAvailable=torch.cuda.is_available()
#定义训练的设备
device=torch.device("cuda")



class MyModule1(nn.Module):
    def __init__(self):
        super(MyModule1, self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),  # 池化的stride默认为kernel
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10),
        )

    def forward(self, input):
        output=self.model1(input)
        return output

#数据集加载
train_data= torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
                                       transform=torchvision.transforms.ToTensor())
test_data= torchvision.datasets.CIFAR10("./dataset", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

#数据集长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集长度{},测试数据集长度{}.".format(test_data_size,test_data_size))

#使用dataloader
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
#创建网络模型
mymodel = MyModule1()
#定义损失函数
loss_fn=nn.CrossEntropyLoss()

#转移到cuda
if cuda_isAvailable:
    mymodel=mymodel.cuda()
    loss_fn=loss_fn.cuda()
    # mymodel=mymodel.to(device)
    # loss_fn=loss_fn.to(device)

#定义优化器
learning_rate=1e-2
optimizer=torch.optim.SGD(mymodel.parameters(),lr=learning_rate)



#设置训练参数
total_train_step=0      #训练的次数
total_test_step=0      #测试的次数
epoch=10                 #训练的轮数

#设置日志
writer=SummaryWriter("logs")

start_time=time.time()

for i in range(epoch):
    print("----------第{}轮训练开始------------".format(i+1))
    mymodel.train()
    for data in train_dataloader:
        imgs,targets=data
        # 转移到GPU
        if cuda_isAvailable:
            imgs=imgs.cuda()
            targets=targets.cuda()
            # imgs = imgs.to(device)
            # targets = targets.to(device)

        outputs=mymodel(imgs)
        loss=loss_fn(outputs,targets)
        # 优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step=total_train_step+1
        if total_train_step%100==0:
            end_time = time.time()
            print("时间花费:{}".format(end_time-start_time))
            print("训练次数:{},loss:{}".format(total_train_step,loss))
            #添加到日志
            writer.add_scalar("Train_loss",loss,total_train_step)

    # 测试开始
    mymodel.eval()
    total_test_loss=0
    total_accuracy=0

    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = mymodel(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss=total_test_loss+loss
            accuracy=(outputs.argmax(1)==targets).sum()
            total_accuracy=total_accuracy+accuracy

    print("整体测试集的loss:{}".format(total_test_loss))
    print("整体测试集正确率acc:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("Test_loss", total_test_loss,total_test_step)
    total_train_step=total_test_step+1

    torch.save(mymodel,"mymodel_{}.pth".format(i))
    print("模型已保存")

writer.close()
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")

使用现成的模型

重点:

import os
os.environ['TORCH_HOME']='E:/dev/torch_model'  #设置vgg模型下载路径

image=torch.reshape(image,(1,3,32,32))
#在gpu训练的模型,加载在cpu运行需要指定map_location
model=torch.load("mymodel.pth",map_location=torch.device('cpu'))
model.eval()
with torch.no_grad():
    
# -*- coding: utf-8 -*- 
# @Time : 2022/5/28 20:11 
# @Author : PVINCE
# @File : test.py 
#@desc:
import torch
from PIL import Image
from torch import nn
from torchvision import transforms

# 搭建模型
class MymModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
             nn.Conv2d(3,16,(5,5),(1,1),padding=2),
             nn.BatchNorm2d(16),
             nn.ReLU(),

             nn.Conv2d(16,64,(3,3),(1,1),padding=1),
             nn.BatchNorm2d(64),
             nn.ReLU(),
             nn.MaxPool2d(2),

             nn.Conv2d(64,128,(3,3),(1,1),padding=1),
             nn.BatchNorm2d(128),
             nn.ReLU(),

             nn.Conv2d(128, 256, (3, 3), (1, 1), padding=1),
             nn.BatchNorm2d(256),
             nn.ReLU(),
             nn.MaxPool2d(2),

             nn.Flatten(),
             nn.Linear(256*8*8,400),
             nn.Dropout2d(p=0.2),
             nn.Linear(400,10)
         )

    def forward(self,x):
        x = self.model(x)
        return x

image_path="./dataset/cat.jpg"
image=Image.open(image_path)
image=image.convert("RGB")
print(image)

transform=transforms.Compose([transforms.Resize((32,32)),
                    transforms.ToTensor()])

image=transform(image)
print(image.shape)

    
image=torch.reshape(image,(1,3,32,32))
#在gpu训练的模型,加载在cpu运行需要指定map_location
model=torch.load("mymodel.pth",map_location=torch.device('cpu'))

model.eval()
with torch.no_grad():
    output=model(image)
print(output)
print(output.argmax(1))

开源仓库

命令行参数可以修改,把required删除或写一个default

学习pytorch——了解深度学习一般框架_第60张图片

目标探测

yolo5

你可能感兴趣的:(#,开发工具,python,pytorch)