mysql
中通过 parent_id
来绑定其上游,从而达到树形结构的存储,但是在查询的过程中就需要我们将 List
列表转成我们理想中的 Tree
树。List locations = this.baseMapper.selectList(queryWrapper);
Map> collect = locations.stream().collect(Collectors.groupingBy(Location::getId));
List resultList = new ArrayList<>();
List parentLocation = getParentLocation(1, collect, id);
if (CollectionUtils.isNotEmpty(parentLocation)) {
for (Location location : parentLocation) {
QueryLocationDto dto = new QueryLocationDto();
BeanUtils.copyProperties(location, dto);
resultList.add(dto);
}
}
复制代码
private List getParentLocation(int level, Map> collect, String id) {
List locationList = new ArrayList<>();
if (collect.containsKey(id)) {
Location location = collect.get(id).get(0);
locationList.add(location);
String superid = location.getSuperid();
locationList.addAll(getParentLocation(level + 1, collect, superid));
}
return locationList;
}
复制代码
Java
来处理的。 其中 getParentLocation
就是用递归不断的去构建上下级关系。这种方式也是我比较推荐的,因为这样就把职责分的很清楚 Java
负责处理业务 ,数据库
就仅仅用来做数据的持久化,这也方便我们对数据库切换与升级。否则在更换其他数据库时还需要考虑是否支持递归属性。public List getTree(List parentList , Map, List> collectMap, OperatorTreeInterface operatorTreeInterface) throws InvocationTargetException, IllegalAccessException, NoSuchMethodException {
if (org.apache.commons.collections4.CollectionUtils.isEmpty(parentList)) {
return new ArrayList<>();
}
List list = new ArrayList<>();
OperatorMapping operatorMapping = operatorTreeInterface.operatorMapping();
for (T t : parentList) {
OperatorTree tree = new OperatorTree();
tree.setId(BeanUtils.getProperty(t, operatorMapping.getId()));
tree.setLabel(BeanUtils.getProperty(t, operatorMapping.getLabel()));
tree.setRealData(t);
if (collectMap.containsKey(tree.getId())) {
List ts = collectMap.getOrDefault((tree.getId()), new ArrayList<>());
tree.setChildren(getTree(ts, collectMap, operatorTreeInterface));
} else {
try {
List ts = collectMap.getOrDefault(Long.valueOf(tree.getId()), new ArrayList<>());
tree.setChildren(getTree(ts, collectMap, operatorTreeInterface));
} catch (Exception e) {
tree.setChildren(getTree(new ArrayList<>(), collectMap, operatorTreeInterface));
}
}
list.add(tree);
}
return list;
}
复制代码
mysql
来实现递归查询, 虽然这种方式个人不推荐使用,但我们还是需要了解 mysql
的特性的。test
表, 表里构建一棵树出来。 祖父→父亲→孙子
。请根据选中节点查询其上游关系
SELECT t2.id, t2.`name`,t1.lvl
FROM
(
SELECT
@r AS _id,
(SELECT @r := parent_id FROM test WHERE id = _id) AS parent_id,
@l := @l + 1 AS lvl
FROM
(SELECT @r := 3, @l := 0) vars, test AS h
WHERE @r <> 0
) t1
JOIN test t2
ON t1._id = t2.Id
order by t1.lvl
复制代码
sql
虽然能够实现递归,但是好像和我们平时接触的 sql
不大一样。这里我们简单分析下mysql
是支持我们用户定义对象的。比如下面这个 sql
set @name = '123';
select @name from dual;
复制代码
123
。 这就是使用到 mysql
中变量定义功能。 通过 @
来进行对象的定义以及赋值。mysql
的执行顺序是由里及外 。 就是说越在内部越先执行。所以针对上面的 SQL
我们将它整理下顺序能够得出。(SELECT @r := parent_id FROM test WHERE id = _id) AS parent_id,
这段sql 实际上归属于第二层。图示中并没有列出,太占地方了。SELECT @r := 3, @l := 0
是不是就很容易明白了呢? r、l
就是 mysql
中定义出来的两个变量。分别是3,0
。和我们上面演示案列中 select @name from dual
是一个意思。(SELECT @r := 3, @l := 0) vars, test AS h
这段就更好理解了。test本身就是一张物理表 , 我们定义出来的两个变量也可以理解成一张表。在mysql中查询两种表是为了区分开来正常都是需要各自取别名的。所以我们定义的变量就是 vars
别名 。 test
别名 h
。SELECT
@r AS _id,
(SELECT @r := parent_id FROM test WHERE id = _id) AS parent_id,
@l := @l + 1 AS lvl
FROM
(SELECT @r := 3, @l := 0) vars, test AS h
WHERE @r <> 0
复制代码
mysql
存在 左外连接
、右外连接
、内连接
。除了这三种还有一种就是 笛卡尔积
连接。什么意思呢?FROM (SELECT @r := 3, @l := 0) vars, test AS h
就是为了给我们构建出一个笛卡尔积 ,而我们定义的变量其实就是一张表里的一条数据,所以这里就是将 test
表所有记录都提取出来。h
表相关字段查出来,因为那根本没用。剩下的就是我们一开始说的一步一步的查询扩充字段了h
表信息没法使用,仅仅使用了其数量。那么我们的名称这个时候还没有,第一层的作用就是将节点名称扩充出来。mysql
的查询递归正常使用存储过程来实现。但是上面提到的方法巧妙的实现了递归的效果。理论上上述方法和存储过程相比存在一个优点就是不会死循环。