概率论笔记—多维随机变量及其分布

目录

  • 一、多维随机变量
  • 二、二维离散型随机变量
  • 三、二维连续型随机变量

一、多维随机变量

① 如果 X 1 , X 2 , ⋅ ⋅ ⋅ , X n X_1,X_2,···,X_n X1,X2,,Xn是定义在同一个样本空间 Ω \Omega Ω上的 n n n个随机变量,则称 ( X 1 , X 2 , ⋅ ⋅ ⋅ , X n ) (X_1,X_2,···,X_n) (X1,X2,,Xn) n n n维随机变量或 n n n维随机向量, X i ( i = 1 , 2 , ⋅ ⋅ ⋅ , n ) X_i(i=1,2,···,n) Xi(i=1,2,,n)称为第 i i i个分量。

n = 2 n=2 n=2时,记 ( X , Y ) (X,Y) (X,Y)二维随机变量(或二维随机向量)。

② 对任意的 n n n个实数 x 1 , x 2 , ⋅ ⋅ ⋅ , x n x_1,x_2,···,x_n x1,x2,,xn,称 n n n元函数:
F ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) = P { X 1 ≤ x 1 , X 2 ≤ x 2 , ⋅ ⋅ ⋅ , X n ≤ x n } F(x_1,x_2,···,x_n)= P\{ X_1 \le x_1, X_2 \le x_2, ···, X_n \le x_n\} F(x1,x2,,xn)=P{X1x1,X2x2,,Xnxn}
n n n维随机变量 ( X 1 , X 2 , ⋅ ⋅ ⋅ , X n ) (X_1,X_2,···,X_n) (X1,X2,,Xn)联合分布函数

F ( x , y ) F(x,y) F(x,y)是关于 x , y x,y x,y的单调不减函数。 F ( − ∞ , y ) = F ( x , − ∞ ) = F ( − ∞ , − ∞ ) = 0 ,   F ( + ∞ , + ∞ ) = 1 F(-\infty,y) = F(x,-\infty)=F(-\infty,-\infty)=0, \ F(+\infty,+\infty)=1 F(,y)=F(x,)=F(,)=0, F(+,+)=1

④ 设二维随机变量 ( X , Y ) (X,Y) (X,Y)的联合分布函数为 F ( x , y ) F(x,y) F(x,y),随机变量 X X X Y Y Y的分布函数 F X ( x ) F_X(x) FX(x) F Y ( y ) F_Y(y) FY(y)分别称为 ( X , Y ) (X,Y) (X,Y)关于 X X X和关于 Y Y Y边缘分布函数。由概率性质得:
F X ( x ) = P { X ≤ x } = P { X ≤ x , Y ≤ + ∞ } = lim ⁡ y → + ∞ P { X ≤ x , Y ≤ y } = lim ⁡ y → + ∞ F ( x , y ) = F ( x , + ∞ ) \begin{aligned} F_X(x) &= P\{ X \le x \} = P\{ X \le x, Y \le +\infty \} \\\\ &= \lim _{y \to + \infty} P\{ X \le x, Y \le y \} \\\\ &= \lim _{y \to + \infty} F(x,y) = F(x,+\infty) \end{aligned} FX(x)=P{Xx}=P{Xx,Y+}=y+limP{Xx,Yy}=y+limF(x,y)=F(x,+)
同理,有 F Y ( y ) = F ( + ∞ , y ) F_Y(y) = F(+\infty,y) FY(y)=F(+,y)

二、二维离散型随机变量

① 如果二维随机变量 ( X , Y ) (X,Y) (X,Y)只能取有限对值或可列对值 ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋅ ⋅ ⋅ , ( x n , y n ) ⋅ ⋅ ⋅ (x_1,y_1),(x_2,y_2),···,(x_n,y_n)··· (x1,y1),(x2,y2),,(xn,yn),则称 ( X , Y ) (X,Y) (X,Y)二维离散型随机变量

p i j = P { X = x i , Y = y j } ,   i , j = 1 , 2 , ⋅ ⋅ ⋅ p_{ij} = P\{ X=x_i,Y=y_j \},\ i,j=1,2,··· pij=P{X=xi,Y=yj}, i,j=1,2,,为 ( X , Y ) (X,Y) (X,Y)的分布律或称为 X X X Y Y Y的联合分布律,记为 ( X , Y ) ∼ p i j (X,Y) \sim p_{ij} (X,Y)pij

② 设 ( X , Y ) (X,Y) (X,Y)的概率分布为 p i j   ,   i , j = 1 , 2 , ⋅ ⋅ ⋅ p_{ij} \ , \ i,j = 1,2,··· pij , i,j=1,2,,则称 ( X , Y ) (X,Y) (X,Y)联合分布函数为:
F ( x , y ) = P { X ≤ x , Y ≤ y } = ∑ x i ≤ x ∑ y j ≤ y p i j F(x,y) = P\{ X \le x,Y \le y \} = \sum _{x_i \le x} \sum _{y_j \le y} p_{ij} F(x,y)=P{Xx,Yy}=xixyjypij

X , Y X,Y X,Y边缘分布为:
p i ⋅ = P { X = x i } = ∑ j = 1 ∞ P { X = x i , Y = y j } = ∑ j = 1 ∞ p i j ,   ( i = 1 , 2 , ⋅ ⋅ ⋅ ) p ⋅ j = P { Y = y j } = ∑ i = 1 ∞ P { X = x i , Y = y j } = ∑ i = 1 ∞ p i j ,   ( j = 1 , 2 , ⋅ ⋅ ⋅ ) p_{i·} = P\{ X=x_i \} = \sum ^{\infty} _{j=1} P\{ X= x_i, Y=y_j \} = \sum ^{\infty} _{j=1}p_{ij}, \ (i = 1,2,···) \\ p_{·j} = P\{ Y=y_j \} = \sum ^{\infty} _{i=1} P\{ X= x_i, Y=y_j \} = \sum ^{\infty} _{i=1}p_{ij}, \ (j = 1,2,···) pi=P{X=xi}=j=1P{X=xi,Y=yj}=j=1pij, (i=1,2,)pj=P{Y=yj}=i=1P{X=xi,Y=yj}=i=1pij, (j=1,2,)

三、二维连续型随机变量

① 如果二维随机变量 ( X , Y ) (X,Y) (X,Y)联合分布函数 F ( x , y ) F(x,y) F(x,y)可以表示为:
F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v ,   ( x , y ) ∈ R 2 F(x,y) = \int ^x _{- \infty} \int ^y _{- \infty} f(u,v)dudv, \ (x,y) \in R^2 F(x,y)=xyf(u,v)dudv, (x,y)R2
其中 f ( x , y ) f(x,y) f(x,y)是非负可积函数,则称 ( X , Y ) (X,Y) (X,Y)二维连续型随机变量,称 f ( x , y ) f(x,y) f(x,y) ( X , Y ) (X,Y) (X,Y)概率密度,记为 ( X , Y ) ∼ f ( x , y ) (X,Y) \sim f(x,y) (X,Y)f(x,y)

② 设 ( X , Y ) ∼ f ( x , y ) (X,Y) \sim f(x,y) (X,Y)f(x,y),则 X , Y X,Y X,Y边缘分布函数为:
F X ( x ) = F ( x , + ∞ ) = ∫ − ∞ x [ ∫ − ∞ + ∞ f ( u , v ) d v ] d u F Y ( y ) = F ( + ∞ , y ) = ∫ − ∞ y [ ∫ − ∞ + ∞ f ( u , v ) d u ] d v F_X(x) = F(x,+\infty)=\int ^x _{-\infty} \left [\int ^{+\infty} _{-\infty} f(u,v) dv \right]du \\ F_Y(y) = F(+\infty,y)=\int ^y _{-\infty} \left [\int ^{+\infty} _{-\infty} f(u,v) du \right]dv FX(x)=F(x,+)=x[+f(u,v)dv]duFY(y)=F(+,y)=y[+f(u,v)du]dv

③ 如果 ( X , Y ) (X,Y) (X,Y)的概率密度为:
f ( x , y ) = { 1 S D , ( x , y ) ∈ D 0 , 其 他 f(x,y) = \left \{ \begin{aligned} &\frac {1} {S_D}, &(x,y) \in D \\ &0,&其他 \end{aligned} \right . f(x,y)=SD1,0(x,y)D
其中 S D S_D SD为区域 D D D的面积,则称 ( X , Y ) (X,Y) (X,Y)在平面有界区域 D D D上服从均匀分布

④ 如果 ( X , Y ) (X,Y) (X,Y)的概率密度为:
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e x p { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 σ 1 ) 2 − 2 ρ ( x − μ 1 σ 1 ) ( y − μ 2 σ 2 ) + ( y − μ 2 σ 2 ) 2 ] } f(x,y) = \frac 1 {2\pi \sigma_1\sigma_2 \sqrt {1-\rho ^2} } exp \left\{ -\frac 1 {2(1-\rho^2)} \left[ (\frac {x-\mu _1} {\sigma_1})^2- 2\rho(\frac {x-\mu_1} {\sigma_1})(\frac {y-\mu_2} {\sigma_2}) + (\frac {y-\mu_2} {\sigma_2})^2 \right] \right\} f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[(σ1xμ1)22ρ(σ1xμ1)(σ2yμ2)+(σ2yμ2)2]}
其中 μ 1 ∈ R , μ 2 ∈ R , σ 1 > 0 , σ 2 > 0 , − 1 < ρ < 1 \mu_1 \in R,\mu_2 \in R,\sigma_1>0,\sigma_2>0,-1<\rho <1 μ1R,μ2R,σ1>0,σ2>0,1<ρ<1,则称 ( X , Y ) (X,Y) (X,Y)服从参数为 μ 1 , μ 2 , σ 1 , σ 2 , ρ \mu_1,\mu_2,\sigma_1,\sigma_2,\rho μ1,μ2,σ1,σ2,ρ二维正态分布,记为 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 , σ 2 , ρ ) (X,Y) \sim N(\mu_1,\mu_2,\sigma_1,\sigma_2,\rho) (X,Y)N(μ1,μ2,σ1,σ2,ρ)

你可能感兴趣的:(概率论,概率论)