GEE可以进行大尺度的地物类型分类,主要原理就是根据不同地物类型的光谱反射率的不同,目前地物分类的算法有很多种,比如随机森林算法等等,本文章主要基于随机森林算法进行大尺度地物分类,代码如下所示:
var samples=ee.FeatureCollection(table);
function maskL8sr(image)
{
var timeStart = image.get('system:time_start');
var srImageList = ee.ImageCollection(' LANDSAT/LC08/C01/T1_SR')
.filterMetadata('system:time_start','equals',timeStart)
.toList(5);
var cloudShadowBitMask = ee.Number(2).pow(3).int();
var cloudsBitMask = ee.Number(2).pow(5).int();
var qa = image.select('pixel_qa');
var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0)
.and(qa.bitwiseAnd(cloudsBitMask).eq(0));
return image.updateMask(mask);
}
function maskL7sr(image)
{
var timeStart = image.get('system:time_start');
var srImageList = ee.ImageCollection('LANDSAT/LE07/C01/T1_SR')
.filterMetadata('system:time_start','equals',timeStart)
.toList(5);
var qa = image.select('pixel_qa');
var cloud = qa.bitwiseAnd(1 << 5)
.and(qa.bitwiseAnd(1 << 7))
.or(qa.bitwiseAnd(1 << 3))
var mask = image.mask().reduce(ee.Reducer.min());
return image.updateMask(cloud.not()).updateMask(mask);
}
function maskL5sr(image)
{
var timeStart = image.get('system:time_start');
var srImageList = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR')
.filterMetadata('system:time_start','equals',timeStart)
.toList(5);
var qa = image.select('pixel_qa');
var cloud = qa.bitwiseAnd(1 << 5)
.and(qa.bitwiseAnd(1 << 7))
.or(qa.bitwiseAnd(1 << 3))
var mask = image.mask().reduce(ee.Reducer.min());
return image.updateMask(cloud.not()).updateMask(mask);
}
function ND_VI(image,b1,b2,bName)
{
var VI = image.normalizedDifference([b1,b2]).rename(bName);
return VI.updateMask(VI.gt(-1).and(VI.lt(1)));
}
function funEVI(image,B1,B2,B3)
{
var VI = image.expression('2.5 * (nir - red) / (nir + 6 * red - 7.5 * blue + 1)',
{
blue: image.select(B1).multiply(0.0001),
red: image.select(B2).multiply(0.0001),
nir: image.select(B3).multiply(0.0001)
}).rename('EVI');
return VI.updateMask(VI.gt(-1).and(VI.lt(1)));
}
function addLandsatVIs(img)
{
var NDVI = ND_VI(img,'B4','B3','NDVI');
var EVI = funEVI(img,'B1','B3','B4');
var LSWI = ND_VI(img,'B4','B5','LSWI');
return img.addBands(NDVI).addBands(EVI).addBands(LSWI);
}
var collection_L8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR')
.filterBounds(region)
.filterDate('2013-01-01','2020-01-01')
.map(maskL8sr)
.select(
['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'pixel_qa']
,['B1', 'B2', 'B3', 'B4', 'B5', 'B7', 'pixel_qa'])
.map(addLandsatVIs);
var collection_L7 = ee.ImageCollection('LANDSAT/LE07/C01/T1_SR')
.filterBounds(region)
.filterDate('1999-01-01','2020-01-01')
.map(maskL7sr)
.select(
['B1', 'B2', 'B3', 'B4', 'B5', 'B7', 'pixel_qa'])
.map(addLandsatVIs);
var collection_L5 = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR')
.filterBounds(region)
.filterDate('1988-01-01','2012-01-01')
.map(maskL5sr)
.select(
['B1', 'B2', 'B3', 'B4', 'B5', 'B7', 'pixel_qa'])
.map(addLandsatVIs);
var collection=ee.ImageCollection(collection_L5.merge(collection_L7).merge(collection_L8));
var LandSatCollection=collection.filterDate('2018-01-01','2019-12-31').filterBounds(region)
Map.addLayer(LandSatCollection.median().clip(region),{min:0,max:3000,bands:['B4','B3','B2']},'Landsat2019')
Map.centerObject(region,7)
var sampleData = samples.randomColumn('random');
var sample_training = sampleData.filter(ee.Filter.lte("random", 0.8));
var sample_validate = sampleData.filter(ee.Filter.gt("random", 0.8));
var data=ee.Image.cat(LandSatCollection.median())
var training = data.sampleRegions({
collection: sample_training,
properties: ["attribute"],
scale: 30
});
var validation = data.sampleRegions({
collection: sample_validate,
properties: ["attribute"],
scale: 30
});
var classifier = ee.Classifier.randomForest(40)
.train({
features: training,
classProperty: 'attribute',
inputProperties: data.bandNames()
});
var Classified_RF = data.classify(classifier);
Map.addLayer(Classified_RF.clip(region), {min:0,max:3,palette:['red','green','orange','blue']}, 'Classified_RF');
var validated = validation.classify(classifier);
var testAccuracy = validated.errorMatrix('attribute', 'classification');
var accuracy = testAccuracy.accuracy();
var userAccuracy = testAccuracy.consumersAccuracy();
var producersAccuracy = testAccuracy.producersAccuracy();
var kappa = testAccuracy.kappa();
print('Validation error matrix:', testAccuracy);
print('Validation overall accuracy:', accuracy);
print('User acc:', userAccuracy);
print('Prod acc:', producersAccuracy);
print('Kappa:', kappa);
其原理主要是基于随机森林算法和光谱反射率及遥感指数进行处理,进而进行分类研究。