从k8s集群e2e调度慢告警看kube-scheduler源码

k8s零基础入门运维课程

k8s纯源码解读教程(3个课程内容合成一个大课程)

k8s运维进阶调优课程

k8s管理运维平台实战

k8s二次开发课程

cicd 课程

prometheus全组件的教程

go语言课程

直播答疑sre职业发展规划

告警的ql


histogram_quantile(0.99, sum(rate(scheduler_e2e_scheduling_duration_seconds_bucket{job="kube-scheduler"}[5m])) without(instance, pod)) > 3 for 1m
  • 含义:调度耗时超过3秒

    追踪这个 histogram的metrics

  • 代码版本 v1.20
  • 位置 D:\go_path\src\github.com\kubernetes\kubernetes\pkg\scheduler\metrics\metrics.go
  • 追踪调用方,在observeScheduleAttemptAndLatency的封装中,位置 D:\go_path\src\github.com\kubernetes\kubernetes\pkg\scheduler\metrics\profile_metrics.go
  • 这里可看到 调度的三种结果都会记录相关的耗时

追踪调用方

  • 位置 D:\go_path\src\github.com\kubernetes\kubernetes\pkg\scheduler\scheduler.go + 608
  • 在函数 Scheduler.scheduleOne中,用来记录调度每个pod的耗时
  • 可以看到具体的调用点,在异步bind函数的底部
  • 由此得出结论 e2e 是统计整个scheduleOne的耗时

    go func() {
          err := sched.bind(bindingCycleCtx, fwk, assumedPod, scheduleResult.SuggestedHost, state)
          if err != nil {
              metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
              // trigger un-reserve plugins to clean up state associated with the reserved Pod
              fwk.RunReservePluginsUnreserve(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
              if err := sched.SchedulerCache.ForgetPod(assumedPod); err != nil {
                  klog.Errorf("scheduler cache ForgetPod failed: %v", err)
              }
              sched.recordSchedulingFailure(fwk, assumedPodInfo, fmt.Errorf("binding rejected: %w", err), SchedulerError, "")
          } else {
              // Calculating nodeResourceString can be heavy. Avoid it if klog verbosity is below 2.
              if klog.V(2).Enabled() {
                  klog.InfoS("Successfully bound pod to node", "pod", klog.KObj(pod), "node", scheduleResult.SuggestedHost, "evaluatedNodes", scheduleResult.EvaluatedNodes, "feasibleNodes", scheduleResult.FeasibleNodes)
              }
              metrics.PodScheduled(fwk.ProfileName(), metrics.SinceInSeconds(start))
              metrics.PodSchedulingAttempts.Observe(float64(podInfo.Attempts))
              metrics.PodSchedulingDuration.WithLabelValues(getAttemptsLabel(podInfo)).Observe(metrics.SinceInSeconds(podInfo.InitialAttemptTimestamp))
    
              // Run "postbind" plugins.
              fwk.RunPostBindPlugins(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
          }
    }

scheduleOne从上到下都包含哪几个过程

01 调度算法耗时
  • 实例代码

    // 调用调度算法给出结果
    scheduleResult, err := sched.Algorithm.Schedule(schedulingCycleCtx, fwk, state, pod)
    // 处理错误
    if err != nil{}
    // 记录调度算法耗时
    metrics.SchedulingAlgorithmLatency.Observe(metrics.SinceInSeconds(start
    }))
  • 从上面可以看出主要分3个步骤

    • 调用调度算法给出结果
    • 处理错误
    • 记录调度算法耗时
  • 那么我们首先应该 算法的耗时,对应的histogram metrics为

    histogram_quantile(0.99, sum(rate(scheduler_scheduling_algorithm_duration_seconds_bucket{job="kube-scheduler"}[5m])) by (le))
  • 将e2e和algorithm 99分位耗时再结合 告警时间的曲线发现吻合度较高
  • 但是发现99分位下 algorithm > e2e ,但是按照e2e作为兜底来看,应该是e2e要更高,所以调整999分位发现2者差不多
  • 造成上述问题的原因跟prometheus histogram线性插值法的误差有关系,具体可以看我的文章 histogram线性插值法原理
Algorithm.Schedule具体流程
  • 在Schedule中可以看到两个主要的函数调用

    
    feasibleNodes, filteredNodesStatuses, err := g.findNodesThatFitPod(ctx, fwk, state, pod)
    priorityList, err := g.prioritizeNodes(ctx, fwk, state, pod, feasibleNodes)
  • 其中 findNodesThatFitPod 对应的是filter流程,对应的metrics有 scheduler_framework_extension_point_duration_seconds_bucket

    histogram_quantile(0.999, sum by(extension_point,le) (rate(scheduler_framework_extension_point_duration_seconds_bucket{job="kube-scheduler"}[5m])))
    
  • 相关的截图可以看到
  • prioritizeNodes对应的是score流程,对应的metrics有

    histogram_quantile(0.99, sum by(plugin,le) (rate(scheduler_plugin_execution_duration_seconds_bucket{job="kube-scheduler"}[5m])))
  • 相关的截图可以看到
  • 上述具体的算法流程可以和官方文档给出的流程图对得上 image
02 调度算法耗时
  • 再回过头来看bind的过程
  • 其中的核心就在bind这里

    err := sched.bind(bindingCycleCtx, fwk, assumedPod, scheduleResult.SuggestedHost, state)
  • 可以看到在bind函数内部是单独计时的

    func (sched *Scheduler) bind(ctx context.Context, fwk framework.Framework, assumed *v1.Pod, targetNode string, state *framework.CycleState) (err error) {
      start := time.Now()
      defer func() {
          sched.finishBinding(fwk, assumed, targetNode, start, err)
      }()
    
      bound, err := sched.extendersBinding(assumed, targetNode)
      if bound {
          return err
      }
      bindStatus := fwk.RunBindPlugins(ctx, state, assumed, targetNode)
      if bindStatus.IsSuccess() {
          return nil
      }
      if bindStatus.Code() == framework.Error {
          return bindStatus.AsError()
      }
      return fmt.Errorf("bind status: %s, %v", bindStatus.Code().String(), bindStatus.Message())
    }
  • 对应的metric为

    histogram_quantile(0.999, sum by(le) (rate(scheduler_binding_duration_seconds_bucket{job="kube-scheduler"}[5m])))
  • 这里我们对比e2e和bind的999分位值
  • 发现相比于alg,bind和e2e吻合度更高
  • 同时发现bind内部主要两个流程 sched.extendersBinding执行外部binding插件
  • fwk.RunBindPlugins 执行内部的绑定插件
内部绑定插件
  • 代码如下,主要流程就是执行绑定插件

    // RunBindPlugins runs the set of configured bind plugins until one returns a non `Skip` status.
    func (f *frameworkImpl) RunBindPlugins(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeName string) (status *framework.Status) {
      startTime := time.Now()
      defer func() {
          metrics.FrameworkExtensionPointDuration.WithLabelValues(bind, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))
      }()
      if len(f.bindPlugins) == 0 {
          return framework.NewStatus(framework.Skip, "")
      }
      for _, bp := range f.bindPlugins {
          status = f.runBindPlugin(ctx, bp, state, pod, nodeName)
          if status != nil && status.Code() == framework.Skip {
              continue
          }
          if !status.IsSuccess() {
              err := status.AsError()
              klog.ErrorS(err, "Failed running Bind plugin", "plugin", bp.Name(), "pod", klog.KObj(pod))
              return framework.AsStatus(fmt.Errorf("running Bind plugin %q: %w", bp.Name(), err))
          }
          return status
      }
      return status
    }
  • 那么默认的绑定插件为调用 pod的bind方法绑定到指定的node上,binding是pods的子资源

    // Bind binds pods to nodes using the k8s client.
    func (b DefaultBinder) Bind(ctx context.Context, state *framework.CycleState, p *v1.Pod, nodeName string) *framework.Status {
      klog.V(3).Infof("Attempting to bind %v/%v to %v", p.Namespace, p.Name, nodeName)
      binding := &v1.Binding{
          ObjectMeta: metav1.ObjectMeta{Namespace: p.Namespace, Name: p.Name, UID: p.UID},
          Target:     v1.ObjectReference{Kind: "Node", Name: nodeName},
      }
      err := b.handle.ClientSet().CoreV1().Pods(binding.Namespace).Bind(ctx, binding, metav1.CreateOptions{})
      if err != nil {
          return framework.AsStatus(err)
      }
      return nil
    }
    
  • 执行绑定动作也有相关的metrics统计耗时,

    histogram_quantile(0.999, sum by(le) (rate(scheduler_plugin_execution_duration_seconds_bucket{extension_point="Bind",plugin="DefaultBinder",job="kube-scheduler"}[5m])))
  • 同时在 RunBindPlugins中也有defer func负责统计耗时

    histogram_quantile(0.9999, sum by(le) (rate(scheduler_framework_extension_point_duration_seconds_bucket{extension_point="Bind",job="kube-scheduler"}[5m])))
  • 从上面两个metrics看,内部的插件耗时都很低
extendersBinding 外部插件
  • 代码如下,遍历Algorithm的Extenders,判断是bind类型的,然后执行extender.Bind

    // TODO(#87159): Move this to a Plugin.
    func (sched *Scheduler) extendersBinding(pod *v1.Pod, node string) (bool, error) {
      for _, extender := range sched.Algorithm.Extenders() {
          if !extender.IsBinder() || !extender.IsInterested(pod) {
              continue
          }
          return true, extender.Bind(&v1.Binding{
              ObjectMeta: metav1.ObjectMeta{Namespace: pod.Namespace, Name: pod.Name, UID: pod.UID},
              Target:     v1.ObjectReference{Kind: "Node", Name: node},
          })
      }
      return false, nil
    }
    
  • extender.Bind对应就是通过http发往外部的 调度器

    // Bind delegates the action of binding a pod to a node to the extender.
    func (h *HTTPExtender) Bind(binding *v1.Binding) error {
      var result extenderv1.ExtenderBindingResult
      if !h.IsBinder() {
          // This shouldn't happen as this extender wouldn't have become a Binder.
          return fmt.Errorf("unexpected empty bindVerb in extender")
      }
      req := &extenderv1.ExtenderBindingArgs{
          PodName:      binding.Name,
          PodNamespace: binding.Namespace,
          PodUID:       binding.UID,
          Node:         binding.Target.Name,
      }
      if err := h.send(h.bindVerb, req, &result); err != nil {
          return err
      }
      if result.Error != "" {
          return fmt.Errorf(result.Error)
      }
      return nil
    }
  • 很遗憾的是这里并没有相关的metrics统计耗时
  • 目前猜测遍历 sched.Algorithm.Extenders 执行的耗时
  • 这里sched.Algorithm.Extenders来自于 KubeSchedulerConfiguration 中的配置
  • 也就是编写配置文件,并将其路径传给 kube-scheduler 的命令行参数,定制 kube-scheduler 的行为,目前并没有看到

总结

scheduler 调度过程

  • 单个pod的调度主要分为3个步骤:

    • 根据Predict和Priority两个阶段,调用各自的算法插件,选择最优的Node
    • Assume这个Pod被调度到对应的Node,保存到cache
    • 用extender和plugins进行验证,如果通过则绑定

    e2e 耗时主要来自bind

你可能感兴趣的:(kubernetesgo运维)