线程池的大小如何设置(美团技术给出动态更改线程大小的方案)

线程池大小的设置一直是在开发中比较难的点,网上没有找到一个比较合适的设置的方案。
这个是美团技术整理一份关于网上比较多的一些线程设置方案。
线程池的大小如何设置(美团技术给出动态更改线程大小的方案)_第1张图片

按照网上的方案设置线程池的大小,基本都是对线程池的大小偏高。下面是美团大佬给出的方案。

Java线程池实现原理及其在美团业务中的实践

这篇博客,主要在这个方案下,写一下代码方面的如果改变比较关注的核心线程、最大线程数、队列长度的调整。这里在调整整个线程池大小的时候有两个需要注意点:

1、jdk 的BlockingQueue 的capacity 是final修饰的。

其实ThreadPoolExecutor提供设置最大线程池和核心线程的大小

executor.setMaximumPoolSize(20);
 executor.setCorePoolSize(10);

但在队列长度设置的的key发现jdk设置容量的地方,
线程池的大小如何设置(美团技术给出动态更改线程大小的方案)_第2张图片
在这里插入图片描述
可以看到阻塞队列的长度是 final修饰的,无法改变其容量大小,因此为了改变容量大小。我们可以自定义阻塞队列,只需要改将阻塞队列改一个名字,并将其去掉final修饰。线程池的大小如何设置(美团技术给出动态更改线程大小的方案)_第3张图片

2、在ThreadPoolExecutor#getTask的时候,如果当前工作线程大于核心最大线程,不能够获取到runnable任务。
线程池的大小如何设置(美团技术给出动态更改线程大小的方案)_第4张图片

如果当前工作线程大于核心最大线程,不能够获取到runnable任务,因此在设置最大线程数和核心线程的大小的时候,需要先设置最大线程数,再去设置核心线程数。

下面是代码的具体实现:

package com.yin.freemakeradd.utils;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.concurrent.*;

/**
 * @author yin
 * @Date 2020/4/25 16:51
 * @Method
 */
public class DynamicThreadPool {


    /**
     * 构建一个普通线程池
     * @return
     */
    private static ThreadPoolExecutor buildThreadPoolExecutor(int corePoolSize,
                                                             int maximumPoolSize,
                                                             long keepAliveTime,
                                                             TimeUnit unit,
                                                             DynamicLinkedBlockingQueue workQueue,
                                                             String threadName){
        return new ThreadPoolExecutor(corePoolSize, maximumPoolSize,
                keepAliveTime,unit, workQueue, new ThreadFactory() {
            @Override
            public Thread newThread(Runnable r) {
                Thread thread = new Thread(r);
                thread.setName(threadName);
                thread.setDaemon(true);
                return thread;
            }
        });
    }

    public static void main(String[] args) throws InterruptedException {
        dynamicThreadPool();
    }


    private static void dynamicThreadPool() throws InterruptedException {
        ThreadPoolExecutor executor = buildThreadPoolExecutor(2, 5,
                60, TimeUnit.SECONDS, new DynamicLinkedBlockingQueue<>(10), "dynamicPoolTestThread");

        for (int i = 0; i < 15; i++) {

            final int j = i;
            executor.submit(()->{
                printThreadPoolStatus(executor, "创建任务");
                try {
                    TimeUnit.SECONDS.sleep(10+2*j);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            });

        }
        sleepSeconds(1);
        printThreadPoolStatus(executor, "完成任务创建");

        DynamicLinkedBlockingQueue queue =(DynamicLinkedBlockingQueue) executor.getQueue();
        queue.setCapacity(20);

        executor.setMaximumPoolSize(20);
        executor.setCorePoolSize(10);




        sleepSeconds(1);

        printThreadPoolStatus(executor, "改变设置之后");
        Thread.currentThread().join();

    }


    private static void sleepSeconds(int time){
        try {
            TimeUnit.SECONDS.sleep(time);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    private static DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss SSS");
    private static void printThreadPoolStatus(ThreadPoolExecutor executor, String name) {
        BlockingQueue queue = executor.getQueue();
        System.out.println(formatter.format(LocalDateTime.now())+"::"+name + "::" + Thread.currentThread().getName() + "::" +
                "核心线程数 :" + executor.getCorePoolSize() +
                "::最大线程数 :" + executor.getMaximumPoolSize() +
                "::活动线程数 :" + executor.getActiveCount()+
        "::任务完成数"+executor.getCompletedTaskCount()+
        "::队列使用 :"+queue.size()+"::队列未使用 :"+queue.remainingCapacity()+"::队列总共大小 :"+(queue.size()+queue.remainingCapacity()));
    }




}

自定义队列:

/*
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

/*
 *
 *
 *
 *
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */


import java.util.*;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.Consumer;

/**
 * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
 * linked nodes.
 * This queue orders elements FIFO (first-in-first-out).
 * The head of the queue is that element that has been on the
 * queue the longest time.
 * The tail of the queue is that element that has been on the
 * queue the shortest time. New elements
 * are inserted at the tail of the queue, and the queue retrieval
 * operations obtain elements at the head of the queue.
 * Linked queues typically have higher throughput than array-based queues but
 * less predictable performance in most concurrent applications.
 *
 * 

The optional capacity bound constructor argument serves as a * way to prevent excessive queue expansion. The capacity, if unspecified, * is equal to {@link Integer#MAX_VALUE}. Linked nodes are * dynamically created upon each insertion unless this would bring the * queue above capacity. * *

This class and its iterator implement all of the * optional methods of the {@link Collection} and {@link * Iterator} interfaces. * *

This class is a member of the * * Java Collections Framework. * * @param the type of elements held in this collection * @author Doug Lea * @since 1.5 */ public class DynamicLinkedBlockingQueue extends AbstractQueue implements BlockingQueue, java.io.Serializable { private static final long serialVersionUID = -6903933977591709194L; /* * A variant of the "two lock queue" algorithm. The putLock gates * entry to put (and offer), and has an associated condition for * waiting puts. Similarly for the takeLock. The "count" field * that they both rely on is maintained as an atomic to avoid * needing to get both locks in most cases. Also, to minimize need * for puts to get takeLock and vice-versa, cascading notifies are * used. When a put notices that it has enabled at least one take, * it signals taker. That taker in turn signals others if more * items have been entered since the signal. And symmetrically for * takes signalling puts. Operations such as remove(Object) and * iterators acquire both locks. * * Visibility between writers and readers is provided as follows: * * Whenever an element is enqueued, the putLock is acquired and * count updated. A subsequent reader guarantees visibility to the * enqueued Node by either acquiring the putLock (via fullyLock) * or by acquiring the takeLock, and then reading n = count.get(); * this gives visibility to the first n items. * * To implement weakly consistent iterators, it appears we need to * keep all Nodes GC-reachable from a predecessor dequeued Node. * That would cause two problems: * - allow a rogue Iterator to cause unbounded memory retention * - cause cross-generational linking of old Nodes to new Nodes if * a Node was tenured while live, which generational GCs have a * hard time dealing with, causing repeated major collections. * However, only non-deleted Nodes need to be reachable from * dequeued Nodes, and reachability does not necessarily have to * be of the kind understood by the GC. We use the trick of * linking a Node that has just been dequeued to itself. Such a * self-link implicitly means to advance to head.next. */ /** * Linked list node class */ static class Node { E item; /** * One of: * - the real successor Node * - this Node, meaning the successor is head.next * - null, meaning there is no successor (this is the last node) */ Node next; Node(E x) { item = x; } } /** * The capacity bound, or Integer.MAX_VALUE if none */ private volatile int capacity; public int getCapacity() { return capacity; } public void setCapacity(int capacity) { this.capacity = capacity; } /** * Current number of elements */ private final AtomicInteger count = new AtomicInteger(); /** * Head of linked list. * Invariant: head.item == null */ transient Node head; /** * Tail of linked list. * Invariant: last.next == null */ private transient Node last; /** * Lock held by take, poll, etc */ private final ReentrantLock takeLock = new ReentrantLock(); /** * Wait queue for waiting takes */ private final Condition notEmpty = takeLock.newCondition(); /** * Lock held by put, offer, etc */ private final ReentrantLock putLock = new ReentrantLock(); /** * Wait queue for waiting puts */ private final Condition notFull = putLock.newCondition(); /** * Signals a waiting take. Called only from put/offer (which do not * otherwise ordinarily lock takeLock.) */ private void signalNotEmpty() { final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { notEmpty.signal(); } finally { takeLock.unlock(); } } /** * Signals a waiting put. Called only from take/poll. */ private void signalNotFull() { final ReentrantLock putLock = this.putLock; putLock.lock(); try { notFull.signal(); } finally { putLock.unlock(); } } /** * Links node at end of queue. * * @param node the node */ private void enqueue(Node node) { // assert putLock.isHeldByCurrentThread(); // assert last.next == null; last = last.next = node; } /** * Removes a node from head of queue. * * @return the node */ private E dequeue() { // assert takeLock.isHeldByCurrentThread(); // assert head.item == null; Node h = head; Node first = h.next; h.next = h; // help GC head = first; E x = first.item; first.item = null; return x; } /** * Locks to prevent both puts and takes. */ void fullyLock() { putLock.lock(); takeLock.lock(); } /** * Unlocks to allow both puts and takes. */ void fullyUnlock() { takeLock.unlock(); putLock.unlock(); } // /** // * Tells whether both locks are held by current thread. // */ // boolean isFullyLocked() { // return (putLock.isHeldByCurrentThread() && // takeLock.isHeldByCurrentThread()); // } /** * Creates a {@code LinkedBlockingQueue} with a capacity of * {@link Integer#MAX_VALUE}. */ public DynamicLinkedBlockingQueue() { this(Integer.MAX_VALUE); } /** * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity. * * @param capacity the capacity of this queue * @throws IllegalArgumentException if {@code capacity} is not greater * than zero */ public DynamicLinkedBlockingQueue(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; last = head = new Node(null); } /** * Creates a {@code LinkedBlockingQueue} with a capacity of * {@link Integer#MAX_VALUE}, initially containing the elements of the * given collection, * added in traversal order of the collection's iterator. * * @param c the collection of elements to initially contain * @throws NullPointerException if the specified collection or any * of its elements are null */ public DynamicLinkedBlockingQueue(Collection c) { this(Integer.MAX_VALUE); final ReentrantLock putLock = this.putLock; putLock.lock(); // Never contended, but necessary for visibility try { int n = 0; for (E e : c) { if (e == null) throw new NullPointerException(); if (n == capacity) throw new IllegalStateException("Queue full"); enqueue(new Node(e)); ++n; } count.set(n); } finally { putLock.unlock(); } } // this doc comment is overridden to remove the reference to collections // greater in size than Integer.MAX_VALUE /** * Returns the number of elements in this queue. * * @return the number of elements in this queue */ public int size() { return count.get(); } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of additional elements that this queue can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this queue * less the current {@code size} of this queue. * *

Note that you cannot always tell if an attempt to insert * an element will succeed by inspecting {@code remainingCapacity} * because it may be the case that another thread is about to * insert or remove an element. */ public int remainingCapacity() { return capacity - count.get(); } /** * Inserts the specified element at the tail of this queue, waiting if * necessary for space to become available. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void put(E e) throws InterruptedException { if (e == null) throw new NullPointerException(); // Note: convention in all put/take/etc is to preset local var // holding count negative to indicate failure unless set. int c = -1; Node node = new Node(e); final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { /* * Note that count is used in wait guard even though it is * not protected by lock. This works because count can * only decrease at this point (all other puts are shut * out by lock), and we (or some other waiting put) are * signalled if it ever changes from capacity. Similarly * for all other uses of count in other wait guards. */ while (count.get() == capacity) { notFull.await(); } enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); } /** * Inserts the specified element at the tail of this queue, waiting if * necessary up to the specified wait time for space to become available. * * @return {@code true} if successful, or {@code false} if * the specified waiting time elapses before space is available * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); int c = -1; final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { while (count.get() == capacity) { if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); } enqueue(new Node(e)); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return true; } /** * Inserts the specified element at the tail of this queue if it is * possible to do so immediately without exceeding the queue's capacity, * returning {@code true} upon success and {@code false} if this queue * is full. * When using a capacity-restricted queue, this method is generally * preferable to method {@link BlockingQueue#add add}, which can fail to * insert an element only by throwing an exception. * * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node node = new Node(e); final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() < capacity) { enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0; } public E take() throws InterruptedException { E x; int c = -1; final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); try { while (count.get() == 0) { notEmpty.await(); } x = dequeue(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } public E poll(long timeout, TimeUnit unit) throws InterruptedException { E x = null; int c = -1; long nanos = unit.toNanos(timeout); final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); try { while (count.get() == 0) { if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos); } x = dequeue(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } public E poll() { final AtomicInteger count = this.count; if (count.get() == 0) return null; E x = null; int c = -1; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { if (count.get() > 0) { x = dequeue(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } public E peek() { if (count.get() == 0) return null; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { Node first = head.next; if (first == null) return null; else return first.item; } finally { takeLock.unlock(); } } /** * Unlinks interior Node p with predecessor trail. */ void unlink(Node p, Node trail) { // assert isFullyLocked(); // p.next is not changed, to allow iterators that are // traversing p to maintain their weak-consistency guarantee. p.item = null; trail.next = p.next; if (last == p) last = trail; if (count.getAndDecrement() == capacity) notFull.signal(); } /** * Removes a single instance of the specified element from this queue, * if it is present. More formally, removes an element {@code e} such * that {@code o.equals(e)}, if this queue contains one or more such * elements. * Returns {@code true} if this queue contained the specified element * (or equivalently, if this queue changed as a result of the call). * * @param o element to be removed from this queue, if present * @return {@code true} if this queue changed as a result of the call */ public boolean remove(Object o) { if (o == null) return false; fullyLock(); try { for (Node trail = head, p = trail.next; p != null; trail = p, p = p.next) { if (o.equals(p.item)) { unlink(p, trail); return true; } } return false; } finally { fullyUnlock(); } } /** * Returns {@code true} if this queue contains the specified element. * More formally, returns {@code true} if and only if this queue contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this queue * @return {@code true} if this queue contains the specified element */ public boolean contains(Object o) { if (o == null) return false; fullyLock(); try { for (Node p = head.next; p != null; p = p.next) if (o.equals(p.item)) return true; return false; } finally { fullyUnlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence. * *

The returned array will be "safe" in that no references to it are * maintained by this queue. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this queue */ public Object[] toArray() { fullyLock(); try { int size = count.get(); Object[] a = new Object[size]; int k = 0; for (Node p = head.next; p != null; p = p.next) a[k++] = p.item; return a; } finally { fullyUnlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the queue fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this queue. * *

If this queue fits in the specified array with room to spare * (i.e., the array has more elements than this queue), the element in * the array immediately following the end of the queue is set to * {@code null}. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose {@code x} is a queue known to contain only strings. * The following code can be used to dump the queue into a newly * allocated array of {@code String}: * *

 {@code String[] y = x.toArray(new String[0]);}
*

* Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the queue are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this queue * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this queue * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public T[] toArray(T[] a) { fullyLock(); try { int size = count.get(); if (a.length < size) a = (T[]) java.lang.reflect.Array.newInstance (a.getClass().getComponentType(), size); int k = 0; for (Node p = head.next; p != null; p = p.next) a[k++] = (T) p.item; if (a.length > k) a[k] = null; return a; } finally { fullyUnlock(); } } public String toString() { fullyLock(); try { Node p = head.next; if (p == null) return "[]"; StringBuilder sb = new StringBuilder(); sb.append('['); for (; ; ) { E e = p.item; sb.append(e == this ? "(this Collection)" : e); p = p.next; if (p == null) return sb.append(']').toString(); sb.append(',').append(' '); } } finally { fullyUnlock(); } } /** * Atomically removes all of the elements from this queue. * The queue will be empty after this call returns. */ public void clear() { fullyLock(); try { for (Node p, h = head; (p = h.next) != null; h = p) { h.next = h; p.item = null; } head = last; // assert head.item == null && head.next == null; if (count.getAndSet(0) == capacity) notFull.signal(); } finally { fullyUnlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c) { return drainTo(c, Integer.MAX_VALUE); } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; boolean signalNotFull = false; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { int n = Math.min(maxElements, count.get()); // count.get provides visibility to first n Nodes Node h = head; int i = 0; try { while (i < n) { Node p = h.next; c.add(p.item); p.item = null; h.next = h; h = p; ++i; } return n; } finally { // Restore invariants even if c.add() threw if (i > 0) { // assert h.item == null; head = h; signalNotFull = (count.getAndAdd(-i) == capacity); } } } finally { takeLock.unlock(); if (signalNotFull) signalNotFull(); } } /** * Returns an iterator over the elements in this queue in proper sequence. * The elements will be returned in order from first (head) to last (tail). * *

The returned iterator is * weakly consistent. * * @return an iterator over the elements in this queue in proper sequence */ public Iterator iterator() { return new Itr(); } private class Itr implements Iterator { /* * Basic weakly-consistent iterator. At all times hold the next * item to hand out so that if hasNext() reports true, we will * still have it to return even if lost race with a take etc. */ private Node current; private Node lastRet; private E currentElement; Itr() { fullyLock(); try { current = head.next; if (current != null) currentElement = current.item; } finally { fullyUnlock(); } } public boolean hasNext() { return current != null; } /** * Returns the next live successor of p, or null if no such. *

* Unlike other traversal methods, iterators need to handle both: * - dequeued nodes (p.next == p) * - (possibly multiple) interior removed nodes (p.item == null) */ private Node nextNode(Node p) { for (; ; ) { Node s = p.next; if (s == p) return head.next; if (s == null || s.item != null) return s; p = s; } } public E next() { fullyLock(); try { if (current == null) throw new NoSuchElementException(); E x = currentElement; lastRet = current; current = nextNode(current); currentElement = (current == null) ? null : current.item; return x; } finally { fullyUnlock(); } } public void remove() { if (lastRet == null) throw new IllegalStateException(); fullyLock(); try { Node node = lastRet; lastRet = null; for (Node trail = head, p = trail.next; p != null; trail = p, p = p.next) { if (p == node) { unlink(p, trail); break; } } } finally { fullyUnlock(); } } } /** * A customized variant of Spliterators.IteratorSpliterator */ static final class LBQSpliterator implements Spliterator { static final int MAX_BATCH = 1 << 25; // max batch array size; final DynamicLinkedBlockingQueue queue; Node current; // current node; null until initialized int batch; // batch size for splits boolean exhausted; // true when no more nodes long est; // size estimate LBQSpliterator(DynamicLinkedBlockingQueue queue) { this.queue = queue; this.est = queue.size(); } public long estimateSize() { return est; } public Spliterator trySplit() { Node h; final DynamicLinkedBlockingQueue q = this.queue; int b = batch; int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1; if (!exhausted && ((h = current) != null || (h = q.head.next) != null) && h.next != null) { Object[] a = new Object[n]; int i = 0; Node p = current; q.fullyLock(); try { if (p != null || (p = q.head.next) != null) { do { if ((a[i] = p.item) != null) ++i; } while ((p = p.next) != null && i < n); } } finally { q.fullyUnlock(); } if ((current = p) == null) { est = 0L; exhausted = true; } else if ((est -= i) < 0L) est = 0L; if (i > 0) { batch = i; return Spliterators.spliterator (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL | Spliterator.CONCURRENT); } } return null; } public void forEachRemaining(Consumer action) { if (action == null) throw new NullPointerException(); final DynamicLinkedBlockingQueue q = this.queue; if (!exhausted) { exhausted = true; Node p = current; do { E e = null; q.fullyLock(); try { if (p == null) p = q.head.next; while (p != null) { e = p.item; p = p.next; if (e != null) break; } } finally { q.fullyUnlock(); } if (e != null) action.accept(e); } while (p != null); } } public boolean tryAdvance(Consumer action) { if (action == null) throw new NullPointerException(); final DynamicLinkedBlockingQueue q = this.queue; if (!exhausted) { E e = null; q.fullyLock(); try { if (current == null) current = q.head.next; while (current != null) { e = current.item; current = current.next; if (e != null) break; } } finally { q.fullyUnlock(); } if (current == null) exhausted = true; if (e != null) { action.accept(e); return true; } } return false; } public int characteristics() { return Spliterator.ORDERED | Spliterator.NONNULL | Spliterator.CONCURRENT; } } /** * Returns a {@link Spliterator} over the elements in this queue. * *

The returned spliterator is * weakly consistent. * *

The {@code Spliterator} reports {@link Spliterator#CONCURRENT}, * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}. * * @return a {@code Spliterator} over the elements in this queue * @implNote The {@code Spliterator} implements {@code trySplit} to permit limited * parallelism. * @since 1.8 */ public Spliterator spliterator() { return new LBQSpliterator(this); } /** * Saves this queue to a stream (that is, serializes it). * * @param s the stream * @throws java.io.IOException if an I/O error occurs * @serialData The capacity is emitted (int), followed by all of * its elements (each an {@code Object}) in the proper order, * followed by a null */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { fullyLock(); try { // Write out any hidden stuff, plus capacity s.defaultWriteObject(); // Write out all elements in the proper order. for (Node p = head.next; p != null; p = p.next) s.writeObject(p.item); // Use trailing null as sentinel s.writeObject(null); } finally { fullyUnlock(); } } /** * Reconstitutes this queue from a stream (that is, deserializes it). * * @param s the stream * @throws ClassNotFoundException if the class of a serialized object * could not be found * @throws java.io.IOException if an I/O error occurs */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in capacity, and any hidden stuff s.defaultReadObject(); count.set(0); last = head = new Node(null); // Read in all elements and place in queue for (; ; ) { @SuppressWarnings("unchecked") E item = (E) s.readObject(); if (item == null) break; add(item); } } }

可以看到当改变设置之后:
线程池的大小如何设置(美团技术给出动态更改线程大小的方案)_第5张图片

你可能感兴趣的:(线程,线程,线程池,线程池大小的设置,动态更改线程大小)