一个机器可以根据照片来辨别鲜花的品种吗?在机器学习角度,这其实是一个分类问题,即机器根据不同品种鲜花的数据进行学习,使其可以对未标记的测试图片数据进行分类。
这一小节,我们还是从scikit-learn出发,理解基本的分类原则,多动手实践。
Iris flower数据集是1936年由Sir Ronald Fisher引入的经典多维数据集,可以作为判别分析(discriminant analysis)的样本。该数据集包含Iris花的三个品种(Iris setosa, Iris virginica and Iris versicolor)各50个样本,每个样本还有4个特征参数(分别是萼片
基于Fisher的线性判别模型,该数据集成为了机器学习中各种分类技术的典型实验案例。
现在我们要解决的分类问题是,当我们看到一个新的iris花朵,我们能否根据以上测量参数成功预测新iris花朵的品种。
我们利用给定标签的数据,设计一种规则进而应用到其他样本中做预测,这是基本的监督问题(分类问题)。
由于iris数据集样本量和维度都很小,所以可以方便进行可视化和操作。
scikit-learn自带有一些经典的数据集,比如用于分类的iris和digits数据集,还有用于回归分析的boston house prices数据集。
可以通过下面的方式载入数据:
from sklearn import datasets
iris = datasets.load_iris()
digits = datasets.load_digits()
该数据集是一种字典结构,数据存储在.data成员中,输出标签存储在.target成员中。
可以用下面的方式画出任意两个维度的散点图,这里以第一维sepal length和第二维数据sepal width为例:
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
iris = datasets.load_iris()
irisFeatures = iris["data"]
irisFeaturesName = iris["feature_names"]
irisLabels = iris["target"]
def scatter_plot(dim1, dim2):
for t,marker,color in zip(xrange(3),">ox","rgb"):
# zip()接受任意多个序列参数,返回一个元组tuple列表
# 用不同的标记和颜色画出每种品种iris花朵的前两维数据
# We plot each class on its own to get different colored markers
plt.scatter(irisFeatures[irisLabels == t,dim1],
irisFeatures[irisLabels == t,dim2],marker=marker,c=color)
dim_meaning = {0:'setal length',1:'setal width',2:'petal length',3:'petal width'}
plt.xlabel(dim_meaning.get(dim1))
plt.ylabel(dim_meaning.get(dim2))
plt.subplot(231)
scatter_plot(0,1)
plt.subplot(232)
scatter_plot(0,2)
plt.subplot(233)
scatter_plot(0,3)
plt.subplot(234)
scatter_plot(1,2)
plt.subplot(235)
scatter_plot(1,3)
plt.subplot(236)
scatter_plot(2,3)
plt.show()
效果如图:
如果我们的目标是区别这三种花朵,我们可以做一些假设。比如花瓣的长度(petal length)好像将Iris Setosa品种与其它两种花朵区分开来。我们可以以此来写一段小代码看看这个属性的边界是什么:
petalLength = irisFeatures[:,2] #select the third column,since the features is 150*4
isSetosa = (irisLabels == 0) #label 0 means iris Setosa
maxSetosaPlength = petalLength[isSetosa].max()
minNonSetosaPlength = petalLength[~isSetosa].min()
print ('Maximum of setosa:{0} '.format(maxSetosaPlength))
print ('Minimum of others:{0} '.format(minNonSetosaPlength))
'''
显示结果是:
Maximum of setosa:1.9
Minimum of others:3.0
'''
我们根据实验结果可以建立一个简单的分类模型,如果花瓣长度小于2,就是Iris Setosa花朵,否则就是其他两种花朵。
这个模型的结构非常简单,是由数据的一个维度阈值来确定的。我们通过实验确定这个维度的最佳阈值。
以上的例子将Iris Setosa花朵和其他两种花朵很容易的分开了,然而我们不能立即确定Iris Virginica花朵和Iris Versicolor花朵的最佳阈值,我们甚至发现,我们无法根据某一维度的阈值将这两种类别很完美的分开。
我们先选出非Setosa的花朵。
irisFeatures = irisFeatures[~isSetosa]
labels = irisLabels[~isSetosa]
isVirginica = (labels == 2) #label 2 means iris virginica
这里我们非常依赖NumPy对于数组的操作,isSetosa是一个Boolean值数组,我们可以用它来选择出非Setosa的花朵。最后,我们还构造了一个新的Boolean数组,isVirginica。
接下来,我们对每一维度的特征写一个循环小程序,然后看一下哪一个阈值能得到更好的准确率。
# search the threshold between virginica and versicolor
irisFeatures = irisFeatures[~isSetosa]
labels = irisLabels[~isSetosa]
isVirginica = (labels == 2) #label 2 means iris virginica
bestAccuracy = -1.0
for fi in xrange(irisFeatures.shape[1]):
thresh = irisFeatures[:,fi].copy()
thresh.sort()
for t in thresh:
pred = (irisFeatures[:,fi] > t)
acc = (pred == isVirginica).mean()
if acc > bestAccuracy:
bestAccuracy = acc;
bestFeatureIndex = fi;
bestThreshold = t;
print 'Best Accuracy:\t\t',bestAccuracy
print 'Best Feature Index:\t',bestFeatureIndex
print 'Best Threshold:\t\t',bestThreshold
'''
最终结果:
Best Accuracy: 0.94
Best Feature Index: 3
Best Threshold: 1.6
'''
这里我们首先对每一维度进行排序,然后从该维度中取出任一值作为阈值的一个假设,再计算这个假设的Boolean序列和实际的标签Boolean序列的一致情况,求平均,即得到了准确率。经过所有的循环,最终得到的阈值和所对应的维度。
最后,我们得到了最佳模型针对第四维花瓣的宽度petal width,我们就可以得到这个决策边界decision boundary。
上面,我们得到了一个简单的模型,并且针对训练数据实现了94%的正确率,但这个模型参数可能过于优化了。
我们需要的是评估模型针对新数据的泛化能力,所以我们需要保留一部分数据,进行更加严格的评估,而不是用训练数据做测试数据。为此,我们会保留一部分数据进行交叉检验。
这样我们就会得到训练误差和测试误差,当复杂的模型下,可能训练的准确率是100%,但是测试时效果可能只是比随机猜测好一点。
在许多实际应用中,数据是不充足的。为了选择更好的模型,可以采用交叉检验方法。交叉检验的基本想法是重复地使用数据;把给定数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。
应用最多的是S折交叉检验(S-fold cross validation),方法如下:首先随机地将已给数据切分为S个互不相交的大小相同的子集;然后利用S-1个子集的数据训练模型,利用余下的子集测试模型;将这一过程对可能的S种选择重复进行;最后选出S次评测中平均测试误差最小的模型。
如上图,我们将数据集分成5部分,即5-fold交叉检验。接下来,我们可以对每一个fold生成一个模型,留出20%的数据进行检验。
留一交叉检验(leave-one-out cross validation)是S折交叉检验的特殊情形,是S为给定数据集的容量时情形。
我们可以从训练数据中挑选一个样本,然后拿其他训练数据得到模型,最后看该模型是否能将这个挑出来的样本正确的分类。
def learn_model(features,labels):
bestAccuracy = -1.0
for fi in xrange(features.shape[1]):
thresh = features[:,fi].copy()
thresh.sort()
for t in thresh:
pred = (features[:,fi] > t)
acc = (pred == labels).mean()
if acc > bestAccuracy:
bestAccuracy = acc;
bestFeatureIndex = fi;
bestThreshold = t;
'''
print 'Best Accuracy:\t\t',bestAccuracy
print 'Best Feature Index:\t',bestFeatureIndex
print 'Best Threshold:\t\t',bestThreshold
'''
return {'dim':bestFeatureIndex, 'thresh':bestThreshold, 'accuracy':bestAccuracy}
def apply_model(features,labels,model):
prediction = (features[:,model['dim']] > model['thresh'])
return prediction
#-----------cross validation-------------
error = 0.0
for ei in range(len(irisFeatures)):
# select all but the one at position 'ei':
training = np.ones(len(irisFeatures), bool)
training[ei] = False
testing = ~training
model = learn_model(irisFeatures[training], isVirginica[training])
predictions = apply_model(irisFeatures[testing],
isVirginica[testing], model)
error += np.sum(predictions != isVirginica[testing])
上面的程序,我们用所有的样本对一系列的模型进行了测试,最终的估计说明了模型的泛化能力。
对于上面对数据集进行划分时,我们需要注意平衡分配数据。如果对于一个子集,所有的数据都来自一个类别,则结果没有代表性。
基于以上的讨论,我们利用一个简单的模型来训练,交叉检验过程给出了这个模型泛化能力的估计。