Python实现机器算法-01-DBSCAN

# -*- coding: UTF-8 -*-
"""

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@File         :   dbscan.py    
@Contact      :   [email protected]
@License      :   (C)Copyright 2017-2019
@Author       :   ffzzyy
@Version      :   0.1
@Modify Time  :   2019/3/28 22:10
@Desciption

dbscan 算法实现

"""
import pandas as pd
import matplotlib.pyplot as plt
import sklearn.cluster as skc
import numpy as np
import math
import seaborn as sns


def dist(a, b):
    """
    输入:向量A, 向量B
    输出:两个向量的欧式距离
    """
    return math.sqrt(np.power(a - b, 2).sum())


class dbscan():
    """dbscan 类

    Parameters
    ----------
    eps,min_samples

    Attributes
    ----------
    core_object_index:list,核心对象序列,对应训练集索引
    _train_set:ndarray,训练集
    labels:ndarray,对应训练集索引的,聚类 id
    _k:int,聚类簇id,从 0 开始

    """
    def __init__(self, eps, min_samples):
        self.eps = eps
        self.min_samples = min_samples
        self.core_object_index = []
        self._train_set = None
        self.labels = []
        self._k = -1
        self.components = []

    def fit(self, train_set):
        self._train_set = train_set
        self.init_core_objects()
        self.labels = np.array([-1] * len(train_set))
        self._k = -1
        unvisited_object_index = range(len(train_set))
        unvisited_core_index = self.core_object_index.copy()  # 深度复制

        while (len(unvisited_core_index) != 0):
            """
            从 未被访问的核心对象中 随机选择一个 queue 序列中,queue 
            来保存 通过第一个核心对象,一个接一个找出其密度可达的 核心对象
            """
            random_index = np.random.choice(unvisited_core_index)
            queue = [random_index]
            """生成,聚类id"""
            self._k = self._k + 1
            # np.delete(unvisited_core_object_index)
            while (len(queue) != 0):
                queue_index_ = queue.pop(0)
                """
                找出在队列中的 核心对象的,eps范围内的 样本(注意是未被聚类的样本),注意这个时候不需要再比较
                minpts了,因为都已经是核心对象了,肯定是大于minpts了
                注意,eps范围内的样本是包含了自身的
                """
                points_index = self.region_query(queue_index_, unvisited_object_index)
                if len(points_index) > 0:
                    # 通过numpy的花式索引,将eps 范围内的未被分类的样本,全服赋值 聚类id K
                    self.labels[points_index] = self._k
                    # 将points_index 序列 从未被访问的样本序列中除去,注意这种技巧
                    unvisited_object_index = list(set(unvisited_object_index) - set(points_index))

                    # 找到eps范围的样本中,是核心对象的,这些需要放到queue队列中,继续迭代
                    intersect_core_index = list(set(unvisited_core_index) & set(points_index))
                    """列表之间的合并需使用extend,不能使用append"""
                    queue.extend(intersect_core_index)
                    # 找到eps范围的样本中,是核心对象的,将其从未被访问的核心对象列表中,去掉
                    unvisited_core_index = list(set(unvisited_core_index) - set(intersect_core_index))

    def init_core_objects(self):
        """
        得到dbscan的核心对象列表
        """
        for i in range(self._train_set.shape[0]):
            seeds = self.region_query(i)
            # 注意是包含了自己的
            if len(seeds) >= self.min_samples:
                self.core_object_index.append(i)

    def eps_neighbor(self, a, b):
        """
        输入:向量A, 向量B
        输出:是否在eps范围内
        """
        return dist(a, b) < self.eps

    def region_query(self, point_id, region_index=None):
        """
        输入:数据集, 查询点id, 半径大小
        输出:在eps范围内的点的id列表
        """
        seeds = []
        if region_index is None:
            nPoints = self._train_set.shape[0]
            for i in range(nPoints):
                if self.eps_neighbor(self._train_set[point_id], self._train_set[i]):
                    seeds.append(i)
        else:
            for i in region_index:
                if self.eps_neighbor(self._train_set[point_id], self._train_set[i]):
                    seeds.append(i)
        return seeds


def load_watermelon_set(file_path):
    """
    载入西瓜4.0数据集
    """
    df = pd.read_csv(file_path, encoding='cp936')
    return df


def show_watermelon_scatter(X):
    # plt.figure()

    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus'] = False

    plt.scatter(x=X[:, 0], y=X[:, 1])
    plt.title("西瓜数据集分布图")
    plt.xlabel("密度")
    plt.ylabel("含糖率")
    plt.show()  # 显示图像
    plt.close()


def show_subplot(ax, X, labels, core_object_index, title=''):
    # colors = plt.cm.rainbow(np.linspace(0, 1, len(set(labels))))
    # colors=['black', 'blue', 'green', 'yellow', 'red', 'purple', 'orange', 'brown']

    n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)  # 获取分簇的数目
    # 使用seaborn的颜色,来标注不同聚类
    current_palette = sns.color_palette("deep", n_colors=n_clusters_)
    colors = sns.color_palette(current_palette).as_hex()

    for i, color in zip(range(n_clusters_), colors):
        one_cluster = X[labels == i]
        ax.scatter(x=one_cluster[:, 0], y=one_cluster[:, 1], s=50, c=color)  # c:颜色参数是一个二维的数组

    """标注离群点"""
    one_cluster = X[labels == -1]
    ax.scatter(x=one_cluster[:, 0], y=one_cluster[:, 1], s=50, marker="X", c="brown", label="离群点")  # c:颜色参数是一个二维的数组
    """为每个离散点,增加标注,例如:x1 x2等等"""
    for i in range(len(X)):
        ax.annotate(s="X{}".format(i + 1),
                    xy=(X[i][0], X[i][1]),
                    xytext=(-3, 3),
                    textcoords="offset points")
    ax.set_title(title)
    ax.set_xlabel("密度")
    ax.set_ylabel("含糖率")
    """定义X Y坐标范围"""
    ax.set_xlim(0, X[:, 0].max() * 1.1)
    ax.set_ylim(0, X[:, 1].max() * 1.1)
    """对核心对象画圆"""
    # one_cluster = X[[2, 4, 5, 7, 8, 12, 13, 17, 18, 23, 24, 27, 28]]
    # for i in one_cluster:
    #     circle(ax,i[0],i[1],0.11)

    """标注核心对象"""
    one_cluster = X[core_object_index]
    ax.scatter(x=one_cluster[:, 0], y=one_cluster[:, 1], s=200, c="", edgecolors='r', label="核心对象")
    ax.legend()


def circle(ax, x, y, r, color='k', count=100):
    """
    在plot上画圆,效果不是特别好
    """
    xarr = []
    yarr = []
    for i in range(count):
        j = float(i) / count * 2 * np.pi
        xarr.append(x + r * np.cos(j))
        yarr.append(y + r * np.sin(j))
        ax.plot(xarr, yarr, c=color, linewidth=0.3)


def main():
    """
    train_set:ndarray,训练集
    labels:ndarray,对应训练集索引的,聚类 id
    core_object_index:list:核心对象,对应训练集索引
    :return:
    """
    watermelon_set_file_path = "西瓜4.0.csv"
    df = load_watermelon_set(watermelon_set_file_path)
    print(df)
    train_set = np.array(df)
    db = dbscan(eps=0.11, min_samples=5)
    db.fit(train_set)
    print("核心对象为:")
    print(db.core_object_index)
    print("样本个数为{0},分簇为:".format(len(db.labels)))
    print(db.labels)
    print("分簇个数为:", db._k + 1)

    # 画两个图,和mklearn聚类的效果进行对比
    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus'] = False
    plt.rcParams['figure.figsize'] = (8, 6)
    fig = plt.figure()
    ax1 = fig.add_subplot(2, 1, 1)
    ax2 = fig.add_subplot(2, 1, 2)
    show_subplot(ax1, db._train_set, db.labels, db.core_object_index, "自己编码dbscan结果")
    # 调用mklearn
    db = skc.DBSCAN(eps=0.11, min_samples=5).fit(train_set)  # DBSCAN聚类方法 还有参数,matric = ""距离计算方法

    show_subplot(ax2, train_set, db.labels_, db.core_sample_indices_, "调用mklearn聚类结果")

    plt.show()
    plt.close()


if __name__ == '__main__':
    main()

 

你可能感兴趣的:(Python实现机器算法)